• Title/Summary/Keyword: hydroponic greenhouse

Search Result 56, Processing Time 0.026 seconds

Development of a Numerical Model for Prediction of the Cooling Load of Nutrient Solution in Hydroponic Greenhouse (수경온실의 양액 냉각부하 예측모델 개발)

  • 남상운;김문기;손정익
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 1993
  • Cooling of nutrient solution is essential to improve the growth environment of crops in hydroponic culture during summer season in Korea. This study was carried out to provide fundamental data for development of the cooling system satisfying the required cooling load of nutrient solution in hydroponic greenhouse. A numerical model for prediction of the cooling load of nutrient solution in hydroponic greenhouse was developed, and the results by the model showed good agreements with those by experiments. Main factors effecting on cooling load were solar radiation and air temperature in weather data, and conductivity of planting board and area ratio of bed to floor in greenhouse parameters. Using the model developed, the design cooling load of nutrient solution in hydroponic greenhouse of 1,000$m^2$(300pyong) was predicted to be 95,000 kJ/hr in Suwon and the vicinity.

  • PDF

Development of Thermal Storage System in Plastic Greenhouse(II) -Thermal performance of solar greenhouse system for hydroponic culture- (플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템의 개발(開發)에 관(關)한 연구(硏究)(II) -수경재배용(水耕栽培用) 태양열(太陽熱) 온실(溫室) 시스템의 열적(熱的) 성능(性能)-)

  • Kim, Y.H.;Koh, H.K.;Kim, M.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.123-133
    • /
    • 1990
  • Thermal performance of a solar heating plastic greenhouse designed for a hydroponic system was studied. The system was constructed with the air-water heat exchanger and thermal storage tank that were combined with hydroponic water beds. Experiments were carried out to investigate the daily average heat stored and released in thermal storage tank, average solar energy collection efficiency, average coefficient of performance, average oil reduction factor of thermal storage system, and the heat transfer coefficient during the nighttime in plastic greenhouse. The results obtained in the present study are summarized as follows. 1. Daily average heat stored in thermal storage tank and released from the thermal storage tank was 1,259 and $797KJ/m^2$ day, respectively. 2. The average solar energy collection efficiency of thermal storage tank was 0.125 during the experiment period. And the average coefficient of performance of thermal storage system in plastic greenhouse was 3.6. 3. The average oil reduction factor of thermal storage system and the heat transfer coefficient during the nighttime in plastic greenhouse were found to be 0.52 and $4.3W/m^2\;hr\;^{\circ}C$, respectively.

  • PDF

The Estimation of Transpiration Rate of Crops in Hydroponic Culture in the Plastic Greenhouse (열수지 해석에 의한 온실 수경재배 작물의 증산속도 추정에 관한 연구)

  • Nam, Sang-Woon;Kim, Moon-Ki
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.27-34
    • /
    • 1990
  • The main objective of this study was to find the relationship between transpiration rate and environmental factors for crops in hydroponic culture within plastic greenhouse by using the computer model developed from the heat balance around leaves of a crop. A computer model was developed and verified through comparison with the experimental results for lettuce in hydroponic culture in a polyethylene film house. The model may be extensively used for the water management and thermal environment study of crops in protected culture, if the supplemented studies for some crops would be accomplished.

  • PDF

Development of Nutrient Solution Cooling System in Hydroponic Greenhouse (수경재배 온실의 양액냉각시스템 개발)

  • 남상운;김문기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.113-121
    • /
    • 1994
  • Since it is difficult to expect the normal production of plants in greenhouses during hot summer season in Korea, certain provisions on the control of extreme environmental factors in summer should be considered for the year-round cultivation in greenhouses. This study was carried out to find a method to suppress the temperature rising of nutrient solution by cooling, which is able to contribute to the improvement of the plant growth environment in hydroponic greenhouse during hot summer season. A mechanical cooling system using the counter flow type with double pipe was developed for cooling the nutrient solution efficiently. Also the heat transfer characteristics of the system was analysed experimentally and theoretically, and compared with the existing cooling systems of nutrient solution. The cooling capacities of three different Systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipe, were evaluated. The performance of each cooling system was about 41 %, 70% and 81 % of design cooling load in hydroponic greenhouse of 1 ,000m$^2$ on the conditions that the flow rate of ground water was 2m$^3$/hr and the temperature difference between two liquids was 10 ˚C According to the results analysed as above, the cooling system was found to have a satisfactory cooling capability for regions where ground water supply is available. Fer the other regions where ground water supply is restricted, more efficient cooling System should be developed.

  • PDF

A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water (지하수를 이용한 양액냉각시스템 개발에 관한 기초연구)

  • 남상운;손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

Study on Establishment of the Greenhouse Environment Monitoring System for Crop Growth Monitoring (작물 생식 모니터링을 위한 온실환경 모니터링 시스템 구축연구)

  • Kim, Won-Kyung;Cho, Byeong-Hyo;Hong, Youngki;Choi, Won-Sik;Kim, Kyoung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2022
  • Currently, the agricultural population in Korea indicates a decreasing and aging orientation. As the population of farm labor continues to decline, so farmers are feeling the pressure to be stable crop production. To solve the problem caused by the decreasing of farm labor, it is necessary to change over to "Digital agriculture". Digital agriculture is tools that digitally collect, store, analyze, and share electronic data and/or information in agriculture, and aims to integrate the several digital technologies into crop and livestock management and other processes in agriculture fields. In addition, digital agriculture can offer the opportunity to increase crop production, save costs for farmer. Therefore, in this study, for data-based Digital Agriculture, a greenhouse environment monitoring system for crop growth monitoring based on Node-RED, which even beginners can use easily, was developed, and the implemented system was verified in a hydroponic greenhouse. Several sensors, such as temperature, humidity, atmospheric pressure, CO2, solar radiation, were used to obtain the environmental data of the greenhouse. And the environmental data were processed and visualized using Node-RED and MariaDB installed in rule.box digital. The environment monitoring system proposed in this study was installed in a hydroponic greenhouse and obtained the environmental data for almost two weeks. As a result, it was confirmed that all environmental data were obtained without data loss from sensors. In addition, the dashboard provides the names of installed sensors, real time environmental data, and changes in the last three days for each environmental data. Therefore, it is considered that farmers will be able to easily monitor the greenhouse environment using the developed system in this study.

Infection Route of Bacterial Wilt of Tomato Caused by Ralstonia. solanacearum in Hydroponic Culture (수경재배에서 토마토풋마름병의 전염경로)

  • Nam, Ki-Woong;Moon, Byung-Woo;Kim, Young-Ho;Lee, Chang-Hee
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.171-176
    • /
    • 2009
  • Hydroponic culture has been developed to control soilborn diseases, to increase yield and to enhance the quality of vegetable, The pathogen could be detected from infected plant materials, hydroponic tanks, culture solution and solid media of the severely infected greenhouse, The density of pathogen population was coincided with the severity of disease incidence, For example, 1,900cfu m$L^{-1}$ pf pathogens were counted from tomato plants sampled in a 20% diseased greenhouse. The pathogens may be introduced in the greenhouse through the contaminated soil surrounding the house and/or through the infected young seedlings grown on the nursery soil. Also, not detected to Ralstonia solanacearum from tomato seeds (House Momotaro, Bbaebbae, Ggoggo, and Minicarol cultivar) selling at a market.

Selection of appropriate nutrient solution for simultaneous hydroponics of three leafy vegetables (Brassicaceae)

  • Young Hwi, Ahn;Seung Won, Noh;Sung Jin, Kim;Jong Seok, Park
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.643-653
    • /
    • 2022
  • This study investigated which nutrient solution is suitable for growth and secondary metabolite contents when three different vegetable plants are grown simultaneously in one hydroponic cultivation bed. Seeds of pak choi (Brassica compestris L. ssp chinsensis), red mustard (Brassica juncea L.), and arugula (Eruca sativa Mill.) were sown in the shape of a triangle in three places on rockwool cubes. The rockwool cubes were placed in semi deepflow technique (semi-DFT) hydroponic systems in a rooftop greenhouse after three weeks of growth as seedlings then cultivated with four different nutrient solutions, Korea Horticultural Experiment Station (KHE), Hoagland, Otsuka-A, and Yamazaki, at the rooftop greenhouse for two weeks. The leaf area of pak choi cultivated in Otsuka-A was the largest but SPAD values, leaf area, and fresh weight of arugula were highest with KHE treatment. The total glucosinolate (GSL) content of pak choi was 151.7% higher in KHE than in Hoagland, and there was no significant difference in Yamazaki and Otsuka-A treatments. The total GSL content of red mustard was 34.6 μmol·g-1 in Hoagland, and it was 32.6% higher in Hoagland than in Yamazaki. Total GSL content of arugula was 57.5% higher in Yamazaki and Hoagland nutrients than in KHE and Otsuka-A nutrients solutions. The total GSL content of three plants grown with KHE was 40.7% higher than with Yamazaki, and the other nutrient solutions did not show significant differences. Therefore, KHE nutrient solution is considered suitable for nutrient solution composition for the cultivation of three different Brassicaceae crops in a single hydroponic cultivation system.

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

Effects of Light-Quality Control on the Plant Growth in a Plant Factory System of Artificial Light Type (인공광 식물공장내 광질 제어가 작물생육에 미치는 영향)

  • Heo, Jeong-Wook;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.270-278
    • /
    • 2021
  • BACKGROUND: Horticultural plant growth under field and/or greenhouse conditions is affected by the climate changes (e.g., temperature, humidity, and rainfall). Therefore investigation of hydroponics on field horticultural crops is necessary for year-round production of the plants regardless of external environment changes under plant factory system with artificial light sources. METHODS AND RESULTS: Common sage (Salvia plebeia), nasturtium (Tropaeolum majus), and hooker chive (Allium hookeri) plants were hydroponically culturing in the plant factory with blue-red-white LEDs (Light-Emitting Diodes) and fluorescent lights (FLs). Leaf numbers of common sage under mixture LED and FL treatments were 134% and 98% greater, respectively than those in the greenhouse condition. In hooker chives, unfolded leaf numbers were 35% greater under the artificial lights and leaf elongation was inhibited by the conventional sunlight compared to the artificial light treatments. Absorption pattern of NO3-N composition in hydroponic solution was not affected by the different light qualities. CONCLUSION(S): Plant factory system with different light qualities could be applied for fresh-leaf production of common sage, nasturtium, and hooker chive plants culturing under field and/or greenhouse. Controlled light qualities in the system resulted in significantly higher hydroponic growth of the plants comparing to conventional greenhouse condition in present.