• Title/Summary/Keyword: hydrophobic finish

Search Result 7, Processing Time 0.024 seconds

Detergency of Particulate Soil of PET Fabric Finished with Hydrophilic and Hydrophobic Chemicals (친수 및 소수처리 PET직물의 고형오구의 세척성)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.11
    • /
    • pp.1237-1245
    • /
    • 2012
  • The effect of hydrophilicity and hydrophobicity of PET fabric on the detergency of particulate soil were investigated as functions of the concentration of hydrophilic and hydrophobic chemicals, surfactant concentration, ionic strength, adhesion and removal time, and pH. The detergency of the particulate soil was determined by the adhesion of particles to and their removal from fabric, the PET fabric and ${\alpha}-Fe_2O_3$ were used as textile materials and for the model of particulate soil, respectively. The hydrophilic and hydrophobic finish for PET fabric was treated with a polyester, silicone and fluorine organic compound of resin respectively. The adhesion of particulate soil to fabric treated with hydrophobic chemicals were slightly higher but its removal from fabric treated with hydrophobic chemicals was largely higher than fabric treated with a hydrophilic chemical regardless of solution conditions such as the concentration of hydrophilic and hydrophobic chemicals, surfactant concentration, ionic strength, adhesion and removal time, and pH. Therefore, hydrophobic treatment for fabric had a more positive effect than the hydrophilic treatment on the detergency of particulate soil.

Effect of Hydrophilic and Hydrophobic Finishes of Fabrics on the Stratum Corneum Water Content and Comfort Properties (직물의 친수 및 소수화 처리가 피부잔류수분량 및 쾌적감에 미치는 영향)

  • Kahng, Soo Ma;Kim, Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.1
    • /
    • pp.151-161
    • /
    • 1993
  • The purpose of this study was to investigate the effect of hydrophilic finish for polyester (PET) fabric and hydrophobic finish for cotton fabric on the water transport and comfort properties. Polyester fabric was treated with 10% sodium hydroxide solution to impart hydrophilicity. Cotton fabric was sprayed with Scotch-gard$^{(R)}$ water and oil repellent finish to impart hydrophobicity. Porosity, air permeability, contact angle, wickability and water vapor transport rate (WVTR) were measured to determine the water transport properties of fabrics. To compare the comfort properties of treated and untreated fabrics, wear test was performed by putting fabric patches on the upper back: stratum corneum water content (SCWC), subjective wettedness and comfort rating were determined. The results were as follows: (1) The contact angle of water on treated polyester fabric was decreased and that of treated cotton fabric was increased. Also, the wickability of treated polyester fabric was increased and the wickability of cotton fabric was decreased. (2) Although each finish did not change porosity, the water vapor transport rate of treated polyester fabric was increased and that of treated cotton fabric was decreased slightly. (3) The results of stratum corneum water content measurements showed good agreement with the results of the contact angle and the wickability, i.e., the better the liquid water transport properties are, the less the stratum corneum water contents were resulted. (4) The realtionship of subjective wettedness or comfort and stratum corneum water content was independent. Therefore, it was concluded that human perception on the subjective wettedness or the comfort is affected by the skin contact of wet fabric rather than by the stratum corneum water content.

  • PDF

Evaluation on Performance of Surface Protectors for Protecting Reinforced Concrete Structures (철근 콘크리트 구조물을 보호하기 위한 표면 보호재의 성능 평가)

  • An, Young-Ki;Jang, Suk-Hwan;Chung, Young-Jun;Nam, Yong-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.217-223
    • /
    • 2005
  • This study is on the evaluation of three kinds of surface protectors for protecting reinforced concrete against corrosion of reinforcing steel by chloride attack and carbonation. In this study, the test has been carried out on the performance of specimens applied with surface protectors for anti-corrosion and anti-carbonation. The result showed that specimens applied with the three kinds of surface protectors, were excellent in resistance to the corrosion of reinforcing steel and carbonation. Especially the specimen applied with finish coating in conjunction with hydrophobic primer showed great reduction in the corrosion of reinforcing steel and carbonation.

Bathochromic Finish of Dyed Fabrics by Low-Temperature Plasma and Sputter Etching Treatment (저온 플라즈마 및 Sputter Etching 처리에 의한 염색직물의 심색화 가공)

  • Pak, Pyong Ki;Lee, Mun Cheul;Park, Geon Yong
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.56-63
    • /
    • 1996
  • Low-temperature plasma treatment or sputter etching is of interest as one of the techniques to modify polymer surface. In this study, poly(ethylene terephthalate)(PET), nylon 6 and cotton fabrics dyed three black dyes were subjected to low-temperature argon plasma and also sputter etching. In relation to bathochromic effect, the surface characteristics of the treated fabrics and films were investigated by means of critical surface tension, SEM and ESCA measurement. The depth of shade of fabrics more increased by the sputter etching technique than argon plasma treatment. Many microcraters on the fiber surface formed by the sputter etching resulted in increase of surface area of the fiber and wettability, but the hydrophobic group was increased by the results of ESCA analysis. In particular the change in reflective index of the fibers was much more effective than the chemical composition of the fiber surface on increasing of the depth of shade.

  • PDF

Improving Hydrophilic and Finishing Performance of Dyeable PP through Atmospheric Pressure Plasma Treatment (플라즈마 처리를 통한 가염PP의 친수화도 및 가공성능 향상)

  • Cho, Hang Sung
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2022
  • Polypropylene(PP) is a textile material with various functions such as eco-friendliness, lightness, and elasticity. Although most synthetic fibers can be dyed and finished, but original PP is difficult to dye or finish due to its extremely hydrophobic properties, so its application expansion is limited. In order to solve this problem, dyeable PP was developed, and various researches on textiles for clothing such as mass production technology, fine fiberization and performance improvement are in progress. Plasma treatment is a processing method for modifying the surface of fabrics, and has effects such as hydrophilization, deepening color, improving adhesion, and surface polymerization. In this study, plasma treatment was applied to study changes in hydrophilization properties of dyeable PP, surface changes before and after plasma treatment and performance according to hydrophilization.

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Water Repellent Finish of Polyester Fabric Using Carbontetrafluoride Plasma Treatment (4불화탄소 플라즈마처리에 의한 폴리에스테르 직물의 발수가공)

  • 모상영;이용운;김태년;천태일
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1994
  • In order to produce a water repellent surface on polyester fabric, samples were treated in the atmosphere of $CF_4$ glow discharge plasma. The samples used in the study were ployester fabric and poyester film. The purpose of film treatment is for the comparison of hydrophobicity with fabric sample at same treatment condition. Radio frequency(13.56MHz) generator was used as electric source and its in put power is 100 Watt. Water repellency was evaluated by contact angle measurement. Result obtained are as follows. 1) Fiber interstice of original fabric was ana lysed as 0.43$\mu$m, and this value was sufficiently ideal for making water repellent fabric. 2) The most favorable setting position of substrate was the center area between two electrodes. 3) Fabric contact angle was higher than film contact angle at same treatment condition, and its difference was more than 50${\circ}$. And it was incapalbe of fabric contact angle measurement when the film contact angle was less than 90${\circ}$. because the fabric is susceptible to absorption of water by the capillary effect. 4) Fabric contact angle can not revealed the precise defferences of surface hydrophobicity, however, the film contact angle showed the real hydrophobic nature. 5) It was not sufficient method to evaluate the hydrophobicity of fabric surface by merely measure of the water contact angle. 6) It showed high water repellent nature at 0.06 torr of $CF_4$ plasma gas pressure and duration of 45 seconds treatment, and it can not be anticipated more improved nature if the pressure and duration of treatment time were increased.

  • PDF