• Title/Summary/Keyword: hydrolysis activity

Search Result 977, Processing Time 0.034 seconds

Preparation of Soluble Dietary Fiber from Oak Wood (Quercus Mongolica) and Its Physiological Function in Rat Fed High Cholesterol Diets (참나무 (Quercus Mongolica)로부터 수용성 식이섬유소의 제조 및 기능성 검증)

  • 채영미;임부국;이종윤;김영희;이순재
    • Journal of Nutrition and Health
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • The preparation method of a soluble dietary fiber from oak wood (Quercus mongolica) and the effect of the soluble dietary fiber on physiological function in rat fed high cholesterol diets was investigated. The best condition for steam explosion method was 25 kgf/㎤ pressure for 6 min. The exploded samples were delignified by the filtration treatment with 1% NaOH for several times, which is the best condition. The enzymatic hydrolysis of Cellusoft cellulase was more effective than Onozuka R-10 cellulase. The manufactured soluble dietary fiber was assayed using gel permeation chromatography (GPC) and it was dissolved in water. Average molecular weight distribution of manufactured soluble dietary fiber was about 348-1,200 and it was assumed the oligomer form fraction. In order to compare the manufactured soluble dietary fiber with commercial soluble dietary fiber (pectin) on the physiological function, Sprague-Dawley male rats weighing 100$\pm$10 g were randomly assigned to one normal diet and five high cholesterol diet containing 1% cholesterol. The high cholesterol diet groups were classified to fiber free diet (FF group), 5% pectin (5P group), 10% pectin (l0P group), 5% manufactured soluble dietary fiber (5M group) and 10% manufactured soluble dietary fiber (10M group). Body weight gains in all soluble dietary fiber groups were lower than FF group. Food intakes were increased in all soluble dietary fiber groups than that of FF group. Food efficiency ratio (FER) was significantly decreased in all soluble dietary fiber groups than that of the FF group, and it was especially was highest in 10% supplemented soluble dietary fiber group. The weight of liver of the soluble dietary fiber supplemented groups were lower than those of the FF group, but weights of cecum and small intestine of all supplemented soluble dietary fiber groups were significantly increased, compared with that of FF group. The weights and water contents in feces were significantly increased by the soluble dietary fiber. The activity of the glutamic oxaloacetic transaminase in soluble dietary fiber groups were significantly decreased than those of FF group. The hepatic glutathione S-transferase activity in all soluble dietary fiber supplemented groups were higher than that of FF group. The physiological effects of the manufactured soluble dietary fiber are the same as the commercial soluble dietary fiber (pectin). The preparation method of the soluble dietary fiber from the oak chips suited to its purpose. (Korean J Nutrition 36(1) : 9~17, 2003)

Inhibitory Effects of PLM-WE1 Formulated from Extract of Phellinus linteus Mycelium against Plant Viruses Infection and Identification of Active Compound (목질진흙버섯(Phellinus linteus) 균사체 추출물 제제 PLM-WE1의 식물 바이러스에 대한 감염억제 효과 및 활성성분의 동정)

  • Kwon, Soon-Bae;Bae, Seon-Hwa;Choi, Jang-Kyung;Lee, Sang-Yong;Kim, Byung-Sup;Kwon, Yong-Soo
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.259-265
    • /
    • 2010
  • Pepper mild mosaic virus(PMMoV) and Cucumber mosaic virus (CMV) are important pathogens in various vegetable crops worldwide. We have found that hot water extract of Phellinus linteus mycelium strongly inhibit PMMoV and CMV infection. Based on these results, the inhibitor named as 'PLM-WE1' formulated from extract of Phellinus linteus mycelium was tested for its inhibitory effects on PMMoV and CMV infection to each local lesion host plant (Nicotiana glutinosa: PMMoV, Chenopodium amaranticolor: CMV). Pretreatment effect of PLM-WE1 against infections of each virus (PMMoV and CMV) to local host plant was measured to be 99.2% to PMMoV and 80.3% to CMV, and its permeability effect was measured to be 45.0% to PMMoV and 41.9% to CMV. Duration of inhibitory activity of PLM-WE1 against PMMoV infection on N. glutinosa was maintained for 3 days at 75% inhibition level and CMV infection on C. amaranticolor maintained for 3 days at 62% inhibition level. Inhibitory effects on systemic host plants of PLM-WE1 were measured to be 75~85% to PMMoV and 75% to CMV. Under electron microscope, PMMoV particles were not denatured or aggregated by mixing PLM-WE1. It is suggested that the mode of action of PLM-WE1 differ from that of inactivation due to the aggregation of viruses. The methanol extract of P. linteus mycelium was sequentially partitioned with haxane, ethyl acetate, BuOH and $H_2O$. The $H_2O$ fraction was showed high activity than the other fractions. The active compound was isolated with a partial acid hydrolysis, fractional precipitation with ethanol. The inhibitory effect of the precipitate isolated from 70% ethanol fraction was 99.1% to PMMoV and 88.0% to CMV. The structure of isolated compound was determined by $^1H$-NMR and $^{13}C$-NMR. This compound was identified as a polysaccharide consisting alpha or beta-glucan.

Biochemical Characterization of Phospholipase C$\delta$from liver of Mud loach (Misgurnus mizolepis) (미꾸라지 간으로부터 포스포리파아제 C델타 단백질의 생화학적 특성)

  • Seo, Jung-Soo;Lim, Sang-Uk;Kim, Na-Young;Lee, Sang-Hwan;Oh, Hyun-Suk;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.18 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • Phosphoinositide-specific phospholipase $C\delta$ $PLC\delta$) plays an important role in many cellular responses and is involved in the production of second messenger. The present study was conducted to obtain the biochemical characteristics of the expressed recombinant $PLC\delta$ in E. coli cloned from Misgurnus mizolepis and partially purified $PLC\delta$ enzymes from liver tissues of M. mizolepis (wild ML-$PLC\delta$). The ML $PLC\delta$ gene was cloned and expressed under the previous report (Kim et al., 2004), and purified the recombinant protein by successive chromatography using $Ni^{2+}$-NTA affinity column and gel iltration FPLC column. The wild ML-$PLC\delta$ protein was solublized with 2 M KCI and purified by successive chromatography on open heparin-Sephagel and analytical TSKgel heparin-5PW. Both the recombinant and wild ML-$PLC\delta$ form of protein showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bis-phosphate (PIP$_2$) or phosphatidylinositol (PI). Its activity was absolutely $Ca^{2+}$- dependant, which was similar to mammalian $PLC\delta$ isozymes. Maximal PI-hydrolytic activations of recombinant and wild ML- TEX>$PLC\delta$ was at pH 7.0 and pH 7.5, respectively. In addition, the enzymatic activities of recombinant and wild ML-$PLC\delta$ were increased in concentration-dependent manner by detergent, such as sodium deoxycholate SDC), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The activities decreased in contrast by a polyamine, such as spermine. Western blotting showed that several types of $PLC\delta$ isozymes exist in various organs. Taken together our results, it suggested that the biochemical characteristics of ML-$PLC\delta$ are similar with those of mammalian $PLC\delta1$ and ${\delta}3$ isozymes.

Industrial potential of domestic Zanthoxylum piperitum and Zanthoxylum schinifolium: Protective effect of both extracts on high glucose-induced neurotoxicity (국내산 초피와 산초의 산업적 활용 가능성: 고당으로 유도된 뇌신경세포 독성에 대한 추출물의 보호 효과)

  • Han, Hye Ju;Park, Seon Kyeong;Kim, Min Ji;An, Jun Woo;Lee, Se Jin;Kang, Jin Yong;Kim, Jong Min;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.274-283
    • /
    • 2020
  • This study focused on the in vitro investigation of antioxidant and anti-diabetic activities, along with neuroprotection against high glucose-induced cytotoxicity, in order to evaluate the physiological effects of Zanthoxylum piperitum and Zanthoxylum schinifolium. The highest total phenolic content was measured in the 40% ethanolic extracts of Zanthoxylum piperitum (EZP) and Zanthoxylum schinifolium (EZS). The in vitro EZP antioxidant activity showed a relatively higher ABTS/DPPH radical scavenging activity and malondialdehyde inhibitory effect than that of EZS. The EZP inhibited carbohydrate hydrolysis (α-glucosidase and α-amylase) more efficiently than EZS in anti-diabetic tests. However, EZS showed a more efficient inhibition of advanced glycation end-products formation than EZP. In addition, both EZP and EZS effectively protected human-derived neuronal cells from high glucose-induced cytotoxicity. Finally, the physiological compounds were analyzed using UPLC IMS-QTOF/MSE, and the main EZP (quercetin-3-O-glucoside and 3-caffeoylquinic acid) and EZS (5-caffeoylquinic acid) compounds were identified as phenolic compounds.

Characteristics of Mung Bean Powders After Various Hydrolysis Protocols (녹두분말의 가수분해 조건에 따른 특성 비교)

  • Kim, Ok-Mi;Gu, Young-Ah;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.301-307
    • /
    • 2007
  • To efficiently use Korean mung beans, the functional characteristics of mung bean powder(A), unhydrolyzed mung bean flour(B), and mung bean flour hydrolyzed under optimum conditions(C), were compared. The contents of protein, fat, carbohydrate, ash, and water, did not vary greatly with different treatment methods. The color values of (B) and (C) were similar, while the L value of (A) was higher than those of the other samples. Thereducing sugar content of (C) was highest at 292.63 mg%, while the total phenol contents of (A) and (C) were similar at 38.63 mg% and 38.38 mg%, respectively. The molecular weight of (A) was under 17 kDa by SDS-PAGE, and was lower than the molecular weights of the other samples (B, C), which generally ranged from 17 kDa to 72 kDa. The free sugar content of (C) was highest at 1,125.16 mg%, while (A) and (B) yielded values of 86.36 mg% and 54.20 mg%, respectively. Total free amino acid contents were in the order(C)(B)(A), and were 22,116.35 mg%, 2,731.29 mg%, and 578.54 mg%, respectively. The amino acid content of (C) was 8,231.42 mg% and was higher than those of (A) or(B). The DPPH free radical scavenging abilities of (A) and (C) were high, at 62.1% and 57.63%, respectively, while (B) showed a lower value at 19.26%. Fibrinolytic activity was highest(24.01%) in (C), and was 20.69% in (A) and 18.06% in (B). The above results indicate that mung bean flour hydrolyzed under optimal conditions (C) had the highest functional and quality characteristics, in comparisonh with unhydrolyzed flour (B) and mung bean powder (A). Diverse applications of hydrolyzed mung bean flour are anticipated.

Hydrolysis of Non-digestible Components of Soybean Meal by α-Galactosidase from Bacillus coagulans NRR1207 (Bacillus coagulans NRR1207이 생산하는 α-galactosidase에 의한 대두박 비소화성분의 가수분해)

  • Ra, Seok Han;Renchinkhand, Gereltuya;Park, Min-gil;Kim, Woan-sub;Paik, Seung-Hee;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1347-1353
    • /
    • 2018
  • The fermentation of non-digestible soy meal can convert polysaccharides into many compounds that have a wide variety of biological functions. Bacillus strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. A highly active ${\alpha}$-galactosidase (${\alpha}$-d-galactoside galactohydrolase, EC 3.2.1.22) was isolated from a bacterium in a traditional Korean fermented medicinal herb preparation. The isolate, T2-16, was identified as Bacillus coagulans based on its 16S rRNA sequence and biochemical properties, and the strain was named Bacillus coagulans NRR-1207. When incubated in 10%(w/v) skim milk, Bacillus coagulans NRR1207 caused a decrease in the pH of the culture medium, as well as an increase in titratable acidity and viable cell counts. This strain also showed higher activities of ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, naphthol-AS-BO-phosphohydrolase, and acid phosphatase when compared to other enzymes. It hydrolyzed oligomeric substrates, such as raffinose and stachyose, and liberated galactose, indicating that the Bacillus coagulans NRR1207 ${\alpha}$-galactosidase hydrolyzed the ${\alpha}$-1,6 glycoside linkage. These results suggest that the decreased stachyose and raffinose contents observed in fermented soy meal are due to this ${\alpha}$-galactosidase activity. Bacillus coagulans NRR1207 therefore has potential probiotic activity and could be utilized in feed manufacturing, as well as for hydrolyzing non-digestible soy meal components.

Evaluation of the Anti-oxidant Activity of Pueraria Extract Fermented by Lactobacillus rhamnosus BHN-LAB 76 (Lactobacillus rhamnosus BHN-LAB 76에 의한 Pueraria 발효 추출물의 항산화 활성 평가)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, Ye-Eun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The phytochemical compounds of Pueraria, a medicinally important leguminous plant, include various isoflavones that have weak estrogenic activity and a potential role in preventing chronic disease, cancer, osteoporosis, and postmenopausal syndrome. However, the major isoflavones are derivatives of puerarin and occur mainly as unabsorbable and biologically inactive glycosides. The bioavailability of the glucosides can be increased by hydrolysis of the sugar moiety using ${\beta}$-glucosidase. In this study, we investigated the antioxidant effects of a Pueraria extract after fermentation by Lactobacillus rhamnosus BHN-LAB 76. The L. rhamnosus BHN-LAB 76 strain was inoculated into Pueraria powder and fermented at $37^{\circ}C$ for 72 hr. The total polyphenol content of the Pueraria extract increased by about 134% and the total flavonoid content increased around 110% after fermentation with L. rhamnosus BHN-LAB 76 when compared to a non-fermented Pueraria extract. Superoxide dismutase-like activities, DPPH radical scavenging, and ABTS radical scavenging increased by approximately 213%, 190%, and 107%, respectively, in the fermented Pueraria extract compared to the non-fermented Pueraria extract. Fermentation of Pueraria extracts with L. rhamnosus BHN-LAB 76 is therefore possible and can effectively increase the antioxidant effects. These results can be applied to the development of improved foods and cosmetic materials.

Target Size of $(Na^++K^+)$-ATPase and $Na^+,\;K^+)$Pump of Human Erythrocytes (사람 적혈구막의 $(Na^++K^+)-ATPase/Na^+,\;K^+\;Pump$의 Target Size)

  • Hah, Jong-Sik;Jung, Chan Y.
    • The Korean Journal of Physiology
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 1985
  • Previous biochemical studies indicate that $(Na^++K^+)-ATPase$ is composed of two subunits, ${\alpha}$ and ${\beta}$, in a form of ${\alpha}_2{\beta}_2$ with a molecular weight of approximately 300,000 daltons. There is also suggestive evidence that the $Na^+$, $K^+$ pump in human erythrocytes occurs in a complex with some glycolytic enzymes. We assessed here in situ assembly size of the $(Na^++K^+)-ATPase$ of human erythrocytes by applying classical target theory to radiation inactivation data of the ouabain-sensitive sodium flux and ATP hydrolysis of intact cells and ghosts. Cells(in the presence of cryoprotective agent) and ghosts were irradiated at $-45^{\circ}C$ to $-50^{\circ}C$ with an increasing dose of a 1.5 MeV electron beam, and after thawing, the pump and/or enzyme activities were assayed. Each activity measured was decreased as a simple exponential function of radiation dose, from which a radiation sensitive volume (target size) was calculated. When intact cells were used, the target size of both $(Na^++K^+)-ATPase$ and $Na^+$, $K^+$ pump was found to be approximately 600,000 daltons. This target size of the ATPase was reduced to approximately 325,000 daltons if the cells were pretreated with strophanthidin. When ghosts were used, the target size of the ATPase was again approximately 325,000 daltons. Our target size measurement suggests that, in intact cells, the $(Na^++K^+)-ATPase/Na^+,K^+$ pump exists either as a dimer of $(\alpha\beta)_2$ which is a functional unit or as a monomer of $(\alpha\beta)_2$ but in tight complex with other enzyme or enzymes. The results also suggest that this dimeric or heterocomplex association is dissociated during ghost preparation and strophanthidin treatment.

  • PDF

Cytotoxicities of Hydrolyzed Crude Laminaran from Eisenia bicyclis on the SNU-1, HeLa and SW Cells (대황으로부터 추출한 crude laminaran 가수분해물의 암 세포독성)

  • Do, Jeong-Ryong;Kim, Dong-Soo;Park, Jong-Hyuk;Kim, Young-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.793-798
    • /
    • 2006
  • We investigated the effects on the cytotoxicity against several cancer cells of the hydrolysis and molecular weight fractionation of crude laminaran from E. bicyclis, a brown seaweed collected from Uleung island in Korea, was extracted with boiling water and then crude laminaran was prepared by ethanol precipitation of extract obtained after elimination of calcium alginate by calcium chloride. Crude laminaran was hydrolyzed by enzyme (Econase CE), acid (0.1 N HCl) and autoclaving ($121^{\circ}C$, 180 min), and the molecular weight fractions by ultrafiltration to generate molecular weight fractions. Total sugar and sulfate contents of hydrolyzed laminaran were 72.3 and 3.5% (enzyme hydrolysate), 68.5 and 3.0% (acid hydrolysate), 70.2 and 3.2% (autoclaved), and monosaccharides of which consisted of glucose (74.7-78.5%), mannose (9.9-11.5%), galactose (8.5-9.6%) and fucose (3.1-4.5%), respectively. When the cytotoxicity of hydrolyzed laminaran on SNU-1, HeLa and SW cells was evaluated by MTT assay, growth-inhibitory activity of the enzyme hydrolysate against cancer cells was higher than that of acid hydrolysate or autoclaved laminaran. Furthermore, the fraction at a molecular weight range of 10 to 50 kDa revealed higher anti-proliferative activities. The $IC_{50}$ values of 10-50 kDa fraction at a molecular weight range of 10 to 50 kDa revealed higher anti-proliferative activities. The $IC_{50}$ values of 10-50 kDa fractions on SNU-1, HeLa and SW cells were 60.4, 58.6 and 53.9 ${\mu}g/mL$ for enzymatic hydrolysate, 75.6, 73.5 and 77.4 ${\mu}g/mL$ for acid hydrolysate, and 61.7, 68.2 and 60.8 ${\mu}g/mL$ for autoclaved, respectively.

Production of Amylase by a Thermophi1ic Fungus, Mucor Sp. (고온성(高溫性) 사상균(絲狀菌) Mucor Sp.에 의(依)한 Amylase의 생산(生産))

  • Lee, Sang Ho;Park, Yoon Joong
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.2
    • /
    • pp.153-163
    • /
    • 1988
  • This experiment was carried out to obtain the thermophilic fungus producing amylase and to investigate properties of the amylase. The selected strain, L-11 was obtained from soil in the vicinity of a hot spring and identified as Mocor sp.. And then the conditions for enzyme production in wheat bran cultures and properties of the crude enzyme were investigated. Furthermore, the enzyme was purified and the characteristics of purified enzyme were studied. The results obtained were as follows: 1. On the wheat bran medium added 80-100% water, amylase was effectively produced by the selected strain, L-11 for 48 hrs incubation at $50^{\circ}C$. 2. When the crude enzyme solution of the strain L-11 was passed through DEAE-Sephadex A-50 column chromatography, two peaks having amylase activity were obtained, and one peak was that of the main enzyme (enzyme of B peak). 3. The purified enzyme (enzyme of B peak) was recognized as single protein band on polyacrylamide disc gel electrophoresis. 4. In the hydrolysis reaction of soluble starch by the enzyme of main amylase, oligosaccharides produced at early stage were maltose and maltotriose mainly and procedure of the reaction maltose amount of maltose and glucose was increased. 5. The strain L-11 was recognized as a special strain producing ${\alpha}-amylase$ mainly and scarcely glucoamylase. 6. The optimum pH, optimum temperature, pH stability, and temperature stability of ${\alpha}-amylase$ were pH 4.0, $60-65^{\circ}C$, pH 4.0-9.0, and below$70^{\circ}C$.

  • PDF