• Title/Summary/Keyword: hydrological parameters

Search Result 265, Processing Time 0.026 seconds

Comparison of Hourly and Daily SWAT Results for the Evaluation of Runoff Simulation Performance (SWAT모형의 시단위 및 일단위 유출 모의성능 비교)

  • Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.59-69
    • /
    • 2016
  • This study aims to evaluate the Soil and Water Assessment Tool (SWAT) hourly hydrological modeling performance and compare it with daily SWAT modeling parameters. For the Byeolmicheon catchment ($1.17km^2$) located in the upstream of Gyeongancheon watershed and total 18 storm events measured during 3 years (2011-2013), the hourly SWAT was calibrated and validated using the Green and Ampt (G&A) infiltration equation. The determination coefficient ($R^2$) and Nash-Sutcliffe model efficiency (NSE) of hourly SWAT discharge were 0.81 and 0.73 respectively, and the most sensitive parameter was soil saturated hydraulic conductivity (SOL_K) and calibrated with the average value of 0.075 mm/hr. In addition, the hourly SWAT simulation by G&A was compared with the daily SWAT simulation by SCS-CN (Soil Conservation Service-Curve Number) method for the whole 3 years period. The houlrly G&A results showed $R^2$ and NSE of 0.71 and 0.50, and the daily SCS-CN results were 0.71 and 0.66, respectively. The SOL_K by daily SCS_CN method was calibrated at 75.5 mm/hr, 1,000 times greater than the hourly G&A method. The next sensitive parameters for the hourly simulation were lag time of lateral flow (LAT_TIME) and lag time of surface runoff (SURLAG).

Assessment of hydrological alteration and environmental flow for Buhang dam construction on Gam River (감천 부항댐 건설에 따른 수문환경 및 하천환경유량 변화 분석)

  • Cho, Yean-Hwa;Na, Jong-moon;Park, Seo-Yeon;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.142-142
    • /
    • 2019
  • 하천 생태환경은 토지이용, 댐건설 및 기후변화 등 외부의 압력에 따른 변화로 인해 오염물 유입, 녹조 발생, 어패류 떼죽음 등 생태계 교란 및 환경변화가 발생한다. 이러한 생태환경 문제를 해결하기 위해 전 세계적으로 하천생태환경시스템 복원이 논의되고 있으며 환경적 측면을 강조한 자연친화적 하천을 목표로 개발 방향이 바뀌고 있다. 이처럼 하천생태환경의 중요성이 커지고 있지만 보다 객관적이고 정량적인 평가를 위한 연구는 부족한 실정이다. 본 연구에서는 낙동강 감천유역을 대상으로 하였으며, 김천부항댐 건설로 인한 생태환경시스템의 변화를 정량적으로 평가하고자 수문변화지표법(Indicators of Hydrologic Alteration, IHA)을 활용하여 33개의 수문변화지표군(IHA Parameters)과 34개 환경유량지표군(Environmental Flow Components Parameters)을 산정하였다. 분석을 위하여 감천유역 선산관측소의 2007년 ~ 2018년까지의 일 유량 자료를 활용하였으며, 댐이 건설된 2014년 1월 1일을 기점으로 댐 건설 전(2007 ~ 2013)과 댐 건설 후(2014 ~ 2018)가 하천생태환경 및 환경유량에 미치는 영향을 평가하였다. 본 연구를 토대로 지속가능한 하천생태계 보전을 위한 명확한 목표와 효율적인 평가과정을 수립하는 데 도움이 될 것으로 보인다.

  • PDF

Pollutant Delivery Ratio of Okdong-cheon Watershed Using HSPF Model (HSPF 모형을 이용한 옥동천 유역의 유달율 분석)

  • Lee, Hyunji;Kim, Kyeung;Song, Jung-Hun;Lee, Do Gil;Rhee, Han-pil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The primary objective of this study was to analyze the delivery ratio using Hydrological Simulation Program - Fortran (HSPF) in Okdong-cheon watershed. Model parameters related to hydrology and water quality were calibrated and validated by comparing model predictions with the 8-day interval filed data collected for ten years from the Korea Ministry of Environment. The results indicated that hydrology and water quality parameters appeared to be reasonably comparable to the field data. The pollutant delivery loads of the watershed in 2015 were simulated using the HSPF model. The delivery ratios of each subwatershed were also estimated by the simple ratio calculation of pollutant discharge load and pollutant delivery load. Coefficients of the regression equation between the delivery ratio and specific discharge were also computed using the delivery ratio. Based on the results, multiple regression analysis was performed using the discharge and the physical characteristics of the subwatershed such as the area. The equation of delivery ratio derived in this study is only for the Okdong-cheon watershed, so the larger studies are needed to apply the findings to other watersheds.

Calibration and Validation of SWAT for the Neponset River Watershed in Boston (보스턴 넷폰셋강의 수질체계에 대한 스왓모델의 교정과 유효성 검증)

  • Lee, Ja-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • A validation study has been performed using the Soil and Water Assessment Tool(SWAT) model with data collected for the Neponset River watershed, which includes roughly 130 square miles of land located southwest of Boston. All of this land drains into the Neponset River, and ultimately into Boston Harbor. This paper presents the methodology of a SWAT model. The calculated contribution of the baseflow to the streamflow is far too high whereas the interflow is strongly underestimated. Alternatively, the modified and calibrated model yields far better results for the catchment. The modification allows hydrological processes to be modeled while not restraining the applicability of the model to catchments with other characteristics. For this study, the SWAT 2005 model is used with ArcGIS 9.1 as an interlace, and sensitivity analysis is performed to provide rough estimated values before adjusting sensitive input parameters during calibration period.

  • PDF

Build-Up a Kinematic Wave Routing System for the Catchment-Stream Complex (사면 및 하도 복합유출장의 단기 유출해석 시스템 개발)

  • Ha, Sung Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.875-886
    • /
    • 1994
  • This study is to develop an advanced storm runoff analysis program which takes geomorphological characteristics of watershed into consideration in determining model parameters. Basic concept of storm runoff modelling is based upon the kinematic wave theory. And numerical solution is obtained by the characteristic curve method. The storm runoff analysis program developed by this study is composed of multiple equivalent roughness sub-basins, each of which has two equivalent catchments on both side of a stream. Because it is based upon the stream-order of the Strahler system, the equivalent catchment-stream network reflects the stochastic geomorphological characteristics in the model parameter. Applicability and reliability of the storm runoff analysis program is evidenced by model calibration and verification process utilizing geographical and hydrological data of the Bocheong-river area which is a representative watershed of IHP projects in Korea. This study will hopefully contribute to hydrological calculation essentially required to understand water quality effect caused by regional development.

  • PDF

An Extraction of Geometric Characteristics Paramenters of Watershed by Using Geographic Information System (지형정보시스템을 이용한 하천유역의 형태학적 특성인자의 추출)

  • 안상진;함창학
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.115-124
    • /
    • 1995
  • A GIS is capable of extracting various hydrological factors from DEM(digital elevation model). One of important tasks for hydrological analysis is the division of watershed. It can be an essential factor among various geometric characteristics of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using GIS technique. The manual process of tasks to obtain geometric characteristics of watershed is automated by using the functions of ARC/INFO software as GIS package. Scanned data was used for this study and it is converted to DEM data. Various forms of representation of spatial data are handled in main module and GRID module of ARC/INFO. GRID module is used on a stream in order to define watershed boundary, so it would be possible to obtain the watersheds. Also, a flow direction, stream networks and orders are generated. The results show that GIS can aid watershed management and research and surveillance. Also the geometric characteristics parameters of watershed can be quantified with ease using GIS technique and the hardsome process can be automated.

  • PDF

Impact Assessment of Climate Change on Hydrologic Components and Water Resources in Watershed (기후변화에 따른 유역의 수문요소 및 수자원 영향평가)

  • Kim Byung Sik;Kim Hung Soo;Seoh Byung Ha;Kim Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.143-148
    • /
    • 2005
  • The main purpose of this study is to suggest and evaluate an operational method for assessing the potential impact of climate change on hydrologic components and water resources of regional scale river basins. The method, which uses large scale climate change information provided by a state of the art general circulation model(GCM) comprises a statistical downscaling approach and a spatially distributed hydrological model applied to a river basin located in Korea. First, we construct global climate change scenarios using the YONU GCM control run and transient experiments, then transform the YONU GCM grid-box predictions with coarse resolution of climate change into the site-specific values by statistical downscaling techniques. The values are used to modify the parameters of the stochastic weather generator model for the simulation of the site-specific daily weather time series. The weather series fed into a semi-distributed hydrological model called SLURP to simulate the streamflows associated with other water resources for the condition of $2CO_2$. This approach is applied to the Yongdam dam basin in southern part of Korea. The results show that under the condition of $2CO_2$, about $7.6\% of annual mean streamflow is reduced when it is compared with the observed one. And while Seasonal streamflows in the winter and autumn are increased, a streamflow in the summer is decreased. However, the seasonality of the simulated series is similar to the observed pattern and the analysis of the duration cure shows the mean of averaged low flow is increased while the averaged wet and normal flow are decreased for the climate change.

  • PDF

Assessment of Climate Change Impacts on Hydrology and Snowmelt by Applying RCP Scenarios using SWAT Model for Hanriver Watersheds (SWAT 모델링을 이용한 한강유역의 RCP 시나리오에 따른 미래수문 및 융설 영향평가)

  • Jung, Chung Gil;Moon, Jang Won;Jang, Cheol Hee;Lee, Dong Ryul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.37-48
    • /
    • 2013
  • The objective of this study is to assess the impact of potential climate change on the hydrological components, especially on the streamflow, evapotranspiration and snowmelt, by using the Soil Water Assessment Tool (SWAT) for 17 Hanriver middle watersheds of South Korea. For future assessment, the SWAT model was calibrated in multiple sites using 4 years (2006-2009) and validated by using 2 years (2010-2011) daily observed data. For the model validation, the Nash-Sutcliffe model efficiency (NSE) for streamflow were 0.30-0.75. By applying the future scenarios predicted five future time periods Baseline (1992-2011), 2040s (2021-2040), 2060s (2041-2060), 2080s (2061-2080) and 2100s (2081-2100) to SWAT model, the 17 middle watersheds hydrological components of evapotranspiration, streamflow and snowmelt were evaluated. For the future precipitation and temperature of RCP 4.5 scenario increased 41.7 mm (2100s), $+3^{\circ}C$ conditions, the future streamflow showed +32.5 % (2040s), +24.8 % (2060s), +50.5 % (2080s) and +55.0 % (2100s). For the precipitation and temperature of RCP 8.5 scenario increased 63.9 mm (2100s), $+5.8^{\circ}C$ conditions, the future streamflow showed +35.5 % (2040s), +68.9 % (2060s), +58.0 % (2080s) and +63.6 % (2100s). To determine the impact on snowmelt for Hanriver middle watersheds, snowmelt parameters of SWAT model were determined through evaluating observed streamflow data during snowmelt periods (November-April). The results showed that average SMR (snowmelt / runoff) of 17 Hanriver middle watersheds was 62.0 % (Baseline). The annual average SMR were 42.0 % (2040s), 39.8 % (2060s), 29.4 % (2080s) and 27.9 % (2100s) by applying RCP 4.5 scenario. Also, the annual average SMR by applying RCP 8.5 scenario were 40.1 % (2040s), 29.4 % (2060s), 18.3 % (2080s) and 12.7 % (2100s).

Application of Normalized Vegetation Index for Estimating Hydrological Factors in the Korea Peninsula from COMS (한반도 지역에서의 수문인자산정을 위한 식생 정보 분석 및 활용 ; 천리안 위성을 이용하여)

  • Park, Jongmin;Baik, Jongjin;Kim, Seong-Joon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.935-943
    • /
    • 2014
  • Normalized Difference Vegetation Index (NDVI) used as input data for various hydrologic models plays a key role in understanding the variation of Hydrometeological parameters and Interaction between surface and atmosphere. Many studies have been conducted to estimate accurate remotely-sensed NDVI using spectral characteristics of vegetation. In this study, we conducted comparative analysis between Communication, Ocean and Meteorological Satellite and MOderate-Resolution Imaging Spectroradiometer (MODIS) NDVI. For comparison, Maximum Value Composite (MVC) was used to estimate 8-day and 16-day composite COMS NDVI. Both 8-day and 16-day COMS NDVI showed high statistical results compared with MODIS NDVI. Based on the results in this study, it can be concluded that COMS can be widely applicable for further ecological and hydrological studies.

A Study on an Extraction of the Geometric Characteristics of the Pyongchang River basin by Using Geographic Information System (GIS를 활용한 유역의 하천 형태학적 특성 추출에 관한 연구)

  • Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.115-119
    • /
    • 1996
  • odel). One of important tasks for hydrological analysis is the division of watershed. It can be an essential factor amThe main objective of this study is to extract of the geometric characteristics of the Pyongchang River basin, headwaters of the South Ran River. A GIS is capable of extracting various hydrological factors from DEM(digital elevation mong various geometric characteristics of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using a GIS technique. The manual process of tasks to obtain geometric characteristics of watershed is automated. by using the function of ARC/INFO software as a GIS package. Scanned data is used for this study and it is converted to DEM data Various forms of representation of spatial data are handled in main modules and a GRID module of ARC/INFO. A GRID module is used on a stream in order to define watershed boundary, so it would be possible to obtain the watersheds. Also, a flowdirection, stream networks and others are generated. The results show that GIS can aid watershed management and research and surveillance. Also the geometric characteristics as parameters of watershed can be quantified by a using GIS technique. Resonable results can be obtained as compared with conventional graphic methods.

  • PDF