• Title/Summary/Keyword: hydrological monitoring

Search Result 147, Processing Time 0.025 seconds

Hydrological Drought Analysis and Monitoring Using Multiple Drought Indices: The Case of Mulrocheon Watershed (수문학적 가뭄감시 및 해석을 위한 다양한 가뭄지수 평가 -물로천 유역을 중심으로-)

  • Lee, Joo-Heon;Park, Seo-Yeon;Kim, Min Gyu;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.477-484
    • /
    • 2021
  • Due to climate change, parts of Korea are experiencing large and small droughts every 2-3 years and extreme droughts every 7 years. Since most droughts occur mainly in areas where small water supply facilities in the tributaries or upstream are located, more research on technology for securing water in these areas is required. In this study, a drought evaluation using SPEI (Standardized Precipitation Evapotranspiration Index), SDI (Streamflow Drought Index), and WBDI (Water Budget-based Drought Index) was performed to investigate hydrological drought in the Mulrocheon watershed of Chuncheon, a vulnerable area in terms of water supply. As a result of calculating hydrological drought indices SPEI and SDI, examining each duration, it was confirmed that the common drought in 2014 did not recover and continued until 2015. In the hydrological drought index evaluation result by WBDI, a very severe drought condition was observed in the spring of 2015 following 2014, and that drought was the most severe at -1.94 in November 2017. As a result of deriving a SDF (Severity-Duration-Frequency) curve through frequency analysis by duration using the drought index calculated on a monthly basis from 2003 to 2019 (17 years), most droughts in the Mulrocheon watershed were found to have a return period of less than 10 years, but droughts that occurred in 2014, 2015, and 2019 were found to cover more than 20 years, respectively.

Towards an Integrated Drought Monitoring with Multi-satellite Data Products Over Korean Peninsular (위성자료를 활용한 한반도 전역의 가뭄 통합 모니터링 방안)

  • Kim, Youngwook;Shim, Changsub
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.993-1001
    • /
    • 2017
  • Drought is a worldwide natural disaster with extensively adverse impacts on natural ecosystems, agricultural products, social communities and regional economy. Various global satellite observations, including SMAP soil moisture, GRACE terrestrial water storage, Terra and Aqua vegetation productivity, evapotranspiration, and satellite precipitation measures are currently used to characterize seasonal timing and inter-annual variations of regional water supply pattern, vegetation growth, drought events, and its associated influence ecosystems and human society. We suggest the satellite monitoring system development to quantify meteorological, eco-hydrological, and socio-ecological factors related to drought events, and characterize spatial and temporal drought patterns in Korea. The combination of these complementary remote sensing observations(visible to microwave bands) provide an effective means for evaluating regional variations in the timing, frequency, and duration of drought, and availability of water supply influencing vegetation and crop growth. This integrated drought monitoring could help national capacity to deal with natural disasters.

Electrical Resistivity Survey for Hydrologic Monitoring in the Gwang-neung Experimental Forest - Preliminary Results (광릉 소유역의 수문 관측을 위한 전기비저항탐사 - 예비결과)

  • Choi In-Hyuk;Moon Sang-Ki;Woo Nam-Chil;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.98-106
    • /
    • 2005
  • Groundwater plays an important role in water and carbon cycles in Gwangneung forest watershed located in a complex landscape. Because groundwater affects electrical resistivity (ER) of underground materials, the depth to water table and water content in subsurface can be investigated through measuring ER. Accordingly, the ER survey has been employed more frequently in recent hydrological investigations. Quantitative applications of the results of ER survey will contribute significantly to the examination of water budget closure at various spatiotemporal scales. This paper presents the preliminary results of the ER survey conducted at Gwangneung forest watershed to determine proper locations and depths of monitoring wells. Such use of ER survey, in conjunction with an integrated geophysical investigation and geographic information system, can provide more effective examination of underground structure and optimal locations of monitoring wells to further our understanding of the role of groundwater.

Spatial-temporal Distribution of Soil Moisture at Bumreunsa Hillslope of Sulmachun Watershed Through an Intensive Monitoring (설마천 유역 범륜사사면의 토양수분 시공간 집중변화양상의 측정)

  • Lee, Ga-Young;Kim, Ki-Hoon;Oh, Kyung-Joon;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.345-354
    • /
    • 2005
  • Time Domain Reflectometry (TDR) with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture at the Bumreunsa hillslope of Sulmachun Watershed. An intensive surveying was performed to build a refined digital elevation model (DEM) and flow determination algorithms with inverse surveying have been applied to establish an efficient soil moisture monitoring system. Soil moisture data were collected through intensive monitoring during 380 hrs in November of 2003. Soil moisture data shows corresponding variation characteristics of soil moisture on the upper, middle and lower parts of the hillslope which were classified from terrain analysis. Measured soil moisture data have been discussed on the context of physical process of hydrological modeling.

The Characteristics and Correlation Analyses of Chlorophyll-a Data Monitored Continuously in Daecheong Reservoir (연속 측정된 대청호 Chlorophyll-a의 자료 특성 및 상관 분석)

  • Yeon, Insung;Hong, Jiyoung;Hong, Eunyoung;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.994-999
    • /
    • 2010
  • The toxin of Cyanobacteria (blue-green algae) during summer season has been a problem and early prevention should be considered. A variety of methods can be used to forecast algal blooms and this study aims at examining feasibility of chlorophyll-a. The real-time data were collected by automatic water quality monitoring system (AWQMS) in Daecheong reservoir and invalid data were sorted by experts. And then, the sorted data were filled using linear interpolation. When the concentration of chlorophyll-a increased by $15mg/m^3$, water temperature and pH exceeded $26.8^{\circ}C$ and 9.5 respectively. As a result of correlation between chlorophyll-a and other parameters(i.e. water quality items and hydrological data), temperature (r=0.502 - 0.574), pH (r=0.583 - 0.681), total organic carbon (TOC, r=0.583 - 0.681) comparably had higher values. Meanwhile, the data around a day or two showed the highest correlation. In addition, chlorophyll-a is considered to be significantly effected by precipitation and inflow.

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.47-60
    • /
    • 2017
  • The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

Operational Water Quality Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 수질 예측)

  • Shin, Chang Min;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.570-581
    • /
    • 2016
  • A watershed model was constructed using the Hydrological Simulation Program Fortran to predict the water quality, especially chlorophyll-a concentraion, at major tributaries of the Nakdong River basin, Korea. The BOD export loads for each land use in HSPF model were estimated at $1.47{\sim}8.64kg/km^2/day$; these values were similar to the domestic monitoring export loads. The T-N and T-P export loads were estimated at $0.618{\sim}3.942kg/km^2/day$ and $0.047{\sim}0.246kg/km^2/day$, slightly less than the domestic monitoring data but within the range of foreign literature values. The model was calibrated at major tributaries for a three-year period (2008 to 2010). The deviation values ranged from -31.5~1.6% of chlorophyll-a, -24.0~2.2% of T-N, and -5.7~34.8% of T-P. The root mean square error (RMSE) ranged from 4.3~44.4 ug/L for chlorophyll-a, -0.6~1.5 mg/L for T-N, and 0.04~0.18 mg/L for T-P, which indicates good calibration results. The operational water quality forecasting results for chlorophyll-a presented in this study were in good agreement with measured data and had an accuracy similar with model calibration results.

A SVR Based-Pseudo Modified Einstein Procedure Incorporating H-ADCP Model for Real-Time Total Sediment Discharge Monitoring (실시간 총유사량 모니터링을 위한 H-ADCP 연계 수정 아인슈타인 방법의 의사 SVR 모형)

  • Noh, Hyoseob;Son, Geunsoo;Kim, Dongsu;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.321-335
    • /
    • 2023
  • Monitoring sediment loads in natural rivers is the key process in river engineering, but it is costly and dangerous. In practice, suspended loads are directly measured, and total loads, which is a summation of suspended loads and bed loads, are estimated. This study proposes a real-time sediment discharge monitoring system using the horizontal acoustic Doppler current profiler (H-ADCP) and support vector regression (SVR). The proposed system is comprised of the SVR model for suspended sediment concentration (SVR-SSC) and for total loads (SVR-QTL), respectively. SVR-SSC estimates SSC and SVR-QTL mimics the modified Einstein procedure. The grid search with K-fold cross validation (Grid-CV) and the recursive feature elimination (RFE) were employed to determine SVR's hyperparameters and input variables. The two SVR models showed reasonable cross-validation scores (R2) with 0.885 (SVR-SSC) and 0.860 (SVR-QTL). During the time-series sediment load monitoring period, we successfully detected various sediment transport phenomena in natural streams, such as hysteresis loops and sensitive sediment fluctuations. The newly proposed sediment monitoring system depends only on the gauged features by H-ADCP without additional assumptions in hydraulic variables (e.g., friction slope and suspended sediment size distribution). This method can be applied to any ADCP-installed discharge monitoring station economically and is expected to enhance temporal resolution in sediment monitoring.

The Applicability Assessment of Environmental Flows Method by Hydrological Approach (수문학적 접근법에 의한 환경유량 산정기법의 적용성 평가)

  • Kim, Joo Cheol;Choi, Yong Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.208-214
    • /
    • 2010
  • This study aimed at the introduction of desktop method for assessment of environmental flows developed by International Water Management Institute (IWMI) recently and its application to Geum river basin. This scheme simulated the influence on aquatic ecosystem caused by watershed development and in turn the decrease of water quantity keeping the river's own flow regime. It was found to be as very effective method although it had simple structure. Flow duration curves for different environmental classes at Sutong and Gongjoo sites were estimated according to the natural conditional scenario of Geum river basin and the results were relatively compared well with the previous studies. The behaviors of monthly average runoff time series of both sites showed the level of A class. The results of this study would provide the fundamental data to establish the future plans of monitoring or management for aquatic ecosystem of Geum river basin.

A Perspective on Radar Remote Sensing of Soil Moisture

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.761-771
    • /
    • 2011
  • The sensitivity of microwave scattering to the dielectric properties and the geometric structure of soil surfaces makes radar remote sensing a challenge for a wide range of environmental issues directly related to the condition of natural surfaces. Especially, the potential for retrieving soil moisture with a high spatial and/or temporal resolution represents a significant contribution to hydrological and ecological modeling. This paper aims to review the current state of the art in SAR technology and methodological issues towards the discovery of a new potential accurate monitoring of soil moisture changes. In this paper, important parameters or constraints significantly affect the sensitivity of the measurements to soil moisture, such as roughness statistics, spatial resolution, and local topography, are discussed to improve the applicability of SAR remote sensing techniques. This study particularly intends to discuss important notes for developing smart and reliable methods capable of retrieving geophysical information.