• Title/Summary/Keyword: hydrological method

Search Result 481, Processing Time 0.024 seconds

Review of Uncertainties in Applying GIS Data and Hydrological Models to Evaluate the Effectiveness of Best Management Practices (수리모델과 GIS 데이터를 이용한 최적관리방안의 평가에 대한 불확실성의 재고)

  • Lee, Tae-Soo
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.245-258
    • /
    • 2011
  • Best management practices (BMPs) are widely accepted and implemented as a mitigation method for soil erosion and non-point source problems. Estimating the amount of soil erosion and the effectiveness of BMPs using hydrological models help to understand the condition, identify the problems, and make plans for conservation practices in an area, typically a watershed. However, the accuracy and reliability of assessment of BMP impacts estimated by hydrological models can be often questionable due to the uncertainties from various sources including GIS(Geographic Information System) data, scale, and model. This study reviewed the development and the background of hydrological models, and the modeling issues such as the selection of models, scale, and uncertainties of data and models. This study also discussed the advantage of a small scale and spatially distributed model to estimate the impacts of BMPs.

  • PDF

Analysis and evaluation of hydrological components in a water curtain cultivation site (수막재배지역의 수문성분 해석 및 평가)

  • Chung, Il-Moon;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.731-740
    • /
    • 2016
  • This study conducts the hydrological component analysis from 2010 to 2015 at the water curtain cultivation area in Cheongwon-gu, Cheongju-si and investigates the monthly based groundwater recharge variation. It is found that the rates of evaportranspiration, surface runoff and groundwater recharge were varied according to the total annual precipitation and their correlations were also changed annually. Annual recharge rates for annual precipitation ranged from 8.3% to 19%, and their coefficient of determination ranged from 0.39 to 0.94. Especially in 2015, when the severe drought came upon this area, the lack of groundwater recharge made groundwater level decrease consistently. Thus, it is thought that the special method of estimating exploitable groundwater in water curtain cultivation site is to be introduced.

Quantitative separation of impacting factors to runoff variation using hydrological model and hydrological sensitivity analysis (수문모형과 수문학적 민감도분석을 이용한 유량변동 요인의 정량적 분리)

  • Kim, Hyeong Bae;Kim, Sang Ug;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.139-153
    • /
    • 2017
  • The variation in runoff due to global climate change and urbanization should be identified quantitatively because these two factors have been significantly accelerated during the last three decades in South Korea. However, only a few research to analyze the impacts due to two factors over different time scales can be found. Therefore, in this study, the hydrological model based approach and the hydrological sensitivity approach were used to separate relative impacts by two factors on monthly, seasonal, and annual time scales at the Soyang River upper basin and the Seom River basin in South Korea. The 3 techniques such as the double mass curve method, the Pettitt's test, and the BCP analysis were performed to detect change point occurred by abrupt change in the collected observed runoff. After detection of change ponts, SWAT models calibrated on the natural periods were used to calculate the changes due to human activities. Also, 6 Budyko based methods were auxiliary to verify the results from hydrological based approach.

A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds

  • Zhang, Shengtang;Zhang, Jingzhou;Liu, Yin;Liu, Yuanchen
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • Rainfall is one of crucial factors that impact on our environment. Rainfall data is important in water resources management, flood forecasting, and designing hydraulic structures. However, it is not available in some rural watersheds without rain gauges. Thus, effective ways of interpolating the available records are needed. Despite many widely used spatial interpolation methods, few studies have investigated rainfall center characteristics. Based on the theory that the spatial distribution of convective rainfall event has a definite center with maximum rainfall, we present a mathematical interpolation method to estimate convective rainfall distribution and indicate the rainfall center location and the center rainfall volume. We apply the method to estimate three convective rainfall events in Santa Catalina Island where reliable hydrological data is available. A cross-validation technique is used to evaluate the method. The result shows that the method will suffer from high relative error in two situations: 1) when estimating the minimum rainfall and 2) when estimating an external site. For all other situations, the method's performance is reasonable and acceptable. Since the method is based on a continuous function, it can provide distributed rainfall data for distributed hydrological model sand indicate statistical characteristics of given areas via mathematical calculation.

A study on the estimation of river water intake using the operating time of the pumping station (양수장의 가동시간을 이용한 하천수 취수량 산정방안 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, Jun-Ho;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • Water management agencies under the Ministry of Environment produce and accumulate qualified basic data for major rivers. However, the integrated management of the river water has been weak since the artificial water circulation process, such as the intaking and drainage of agricultural water, has not been examined in the basin, which includes many agricultural land. In this study, a study was conducted on how the power usage method (operating time method) based on the running time can be applied and improved among indirect flow rate measurement methods used to investigate flow rates collected by the riverside for agricultural water purposes, and thus the resultant data of high reliability can be obtained at low cost. The operation time method is suitable for small-scale water pumping stations where it is difficult to secure real-time power supply data. The reliability of the data was verified through the correlation analysis with the actual flow rate, and it was found that the flow rate calculated by the operation time method reflecting the level of the stream to which the inlet of the pumping station is connected can be reasonably matched with the actual flow rate. In addition, it was confirmed that the investment cost at the time of initial installation of the facility was highly efficient by generating qualified flow data at low cost through comparison with direct flow rate measurement methods. If flow data is secured by applying the operation time method to large and small water farms located along the riverside, it is expected that more quantitative and integrated stream water management will be possible.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

Runoff Hydrograph Synthesis from Small Watersheds Considering Hydrological Characteristics of Irrigated Rice Paddies (논의 수문특성을 고려한 소유역의 유출곡선 합성)

  • 김철겸;박승우;임상준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.56-62
    • /
    • 2000
  • The NRCS curve number (CN) method has been widely adopted in practice to synthesize runoff hydrographs from small watersheds with complex land use. It may not be valid to apply this model for irrigated paddies, since hydrological characteristics of irrigated rice paddies are not sufficiently considered in CN method. This paper attempts to extend the capability of the well-known SCS TR-20 model to local conditions by formulating a submodel for the runoff-processes in paddies. The modified model was tested with field data from the Baran watershed. The results were in good agreement with field data. It was also applicable to simulate runoff changes resulting from land use changes within the watershed.

  • PDF

Storage Type Nonlinear Hydrological Forecasting Model (저류함수형(貯溜凾數型) 비선형(非線型) 수문예측모형(水文豫測模型))

  • Baek, Un Il;Yoon, Tae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.29-38
    • /
    • 1982
  • Nonlinear hydrological model containing the nonlinearity of effective rainfall, lag time and runoff is presented. In the evaluation of rainfall excess, the polynomial fitting method for total rainfall, 5 day antecedant rainfall and direct runoff is developed. In the application to actual watershed, the estimated model parameters of nonlinear lag model reflecting the nonlinearity of lag time are compared with the parameters, by both the fitting method and the correlation, model which are the modified version of the storage function model. The Successive Approximation Method in mathematical solution and Newton-Rhapson method in numerical solution are found to be superior to the conventional numerical graphic method in the analysis of nonlinear processes.

  • PDF

A Study on Channel Flood Routing Using Nonlinear Regression Equation for the Travel Time (비선형 유하시간 곡선식을 이용한 하도 홍수추적에 관한 연구)

  • Kim, Sang Ho;Lee, Chang Hee
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.148-153
    • /
    • 2016
  • Hydraulic and hydrological flood routing methods are commonly used to analyze temporal and spatial flood influences of flood wave through a river reach. Hydrological flood routing method has relatively more simple and reasonable performance accuracy compared to the hydraulic method. Storage constant used in Muskingum method widely applied in hydrological flood routing is very similar to the travel time. Focusing on this point, in this study, we estimate the travel time from HEC-RAS results to estimate storage constant, and develop a non-linear regression equation for the travel time using reach length, channel slope, and discharge. The estimated flow by Muskingum model with storage constant of nonlinear equation is compared with the flow calculated by applying the HEC-RAS 1-D unsteady flow simulation. In addition, this study examines the effect on the weighting factor changes and interval reach divisions; peak discharge increases with the bigger weighting factor, and RMSE decreases with the fragmented division.

Hydrological Drought Analysis using Copula Theory (Copula 이론을 이용한 수문학적 가뭄 분석)

  • Kwak, Jae Won;Kim, Duck Gil;Lee, Jong Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.161-168
    • /
    • 2012
  • Drought is a normal and recurrent phenomenon. But, recurring prolonged droughts have caused consequences and diverse impacts on human system. Therefore, understanding drought characteristics is indispensable element in well-prepared drought management. This study aims to investigate the hydrological droughts of Pyongchang stream and Upstream of Namhan-river in Korean peninsula. For modelling of the joint distribution of drought duration and drought severity, the copula method is used to construct the bivariate drought distribution and return period from the predetermined marginal distributions of drought duration and drought severity. As the result, the most severed drought of the Pyongchang stream and Upstream of Namhan-river occuring during period 1967 to 2007 is the 1981 and 1973. Return period for this drought derived from copula is 550 and 110 years.