• Title/Summary/Keyword: hydrological data

Search Result 918, Processing Time 0.03 seconds

Retrieval of Key Hydrological Parameters in the Yellow River Basin Using Remote Sensing Technique

  • Dong, Jiang;Jianhua, Wang;Xiaohuan, Yang;Naibin, Wang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.721-727
    • /
    • 2002
  • Precipitation evapotranspiration and runoff are three key parameters of regional water balance. Problems exist in the traditional methods for calculating such factors , such as explaining of the geographic rationality of spatial interpolating methods and lacking of enough observation stations in many important area for bad natural conditions. With the development of modern spatial info-techniques, new efficient shifts arose for traditional studies. Guided by theories on energy flow and materials exchange within Soil-Atmosphere-Plant Continuant (SPAC), retrieval models of key hydrological parameters were established in the Yellow River basin using CMS-5 and FengYun-2 meteorological satellite data. Precipitation and evapotranspiration were then estimated: (1) Estimating tile amount of solar energy that is absorbed by the ground with surface reflectivity, which is measured in the visible wavelength band (VIS): (2) Assessing the partitioning of the absorbed energy between sensible and latent heat with the surface temperature, which was measured in the thermal infrared band (TIR), the latent heat representing the evapotranspiration of water; (3) Clouds are identified and cloud top levels are classified using both VIS and TIR data. Hereafter precipitation will be calculated pixel by pixel with retrieval model. Daily results are first obtained, which are then processed to decade, monthly and yearly products. Precipitation model has been has been and tested with ground truth data; meanwhile, the evapotranspiration result has been verified with Large Aperture Scintillometry (LAS) presented by Wageningen University of the Netherlands. Further studies may concentrate on the application of models, i.e., establish a hydrological model of the Yellow river basin to make the accurate estimation of river volume and even monitor the whole hydrological progress.

  • PDF

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Hydrology Down Under - An Overview of Hydrological Monitoring Networks of New Zealand

  • Ede, Michael
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.127-131
    • /
    • 2010
  • Generally in New Zealand there is plenty of regular rainfall replenishing our waterways. Water agencies currently operate over 3000 hydrological monitoring stations in New Zealand. Data from these stations enable scientists to develop a detailed understanding of the status of water resources to ensure that the water resources are managed in an effective and sustainable way.

  • PDF

Operation of Experimental Basin(Yi-dong Basin) (시험유역운영(이동유역))

  • 박재홍;김진택;박지환
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2003.05b
    • /
    • pp.611-614
    • /
    • 2003
  • Yi-dong experimental basin is operated for research on the rural basin characteristics and accumulation of a long term data by hydrological observation equipments. It is basin area 9,440ha, length 14.4km and slope 0.67%. Hydrological observation network is constructed of rainfall meter 4points, reservoir storage level 3points and river water level 2points.

  • PDF

Analysis of Hydrological Factor for Permeable Pavement by using Soil Tank Experiment (토조실험에 의한 투수성 포장재의 수문학적 요소 분석)

  • Jun, Sang-Mi;Lee, Jung-Min;Park, Jae-Hyeoun;Lee, Sang-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.181-192
    • /
    • 2009
  • In this study, the hydrological properties of permeable pavement were analyzed by the experiment and the numerical simulation. The numerical model used was a modified SWMM especially for considering the hydrological response of permeable pavement. The parameters of modified SWMM were revised by the experimental results, and then the practicability was evaluated through the comparison of the experimental and numerical simulation results. In the experiments, three different rainfall intensities such as 65 mm/hr, 90 mm/hr, 95 mm/hr were supplied for 4 hrs, and the hydraulic properties including surface outflow, subsurface outflow, ground water level, soil water contents were measured for 10 hrs. The results showed rainfall intensity effected directly on surface outflow volume and subsurface outflow volume was more effected by ground water level than rainfall intensity. The ground water level and the soil water contents were under estimated as compared with the experimental data except the portion of occurring direct runoff. The surface and subsurface outflow discharge were simulated very well in comparison with the experimental data. Consequently, the modified SWMM could be used very effectively to evaluate the hydrological property of permeable pavement.

The Effects of DEM Resolution on Hydrological Simulation in BASINS-HSPF Modeling

  • Jeon, Ji-Hong;Yoon, Chun-Gyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.453-456
    • /
    • 2002
  • In this study, the effect of DEM resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using BASINS (Better Assessment Science Integrating point and Nonpoint Source) for Heukcheon watershed (303.3km2) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might effects on the simulation of water quantity and quality. The area weighted average watershed slope became lower but the length weighted average channel slope became higher as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation DEM mesh size of 100m is recommended for this watershed.

  • PDF

Evaluation of Semi-Distributed Hydrological Drought using SWSI (Surface Water Supply Index) (SWSI를 이용한 준분포형 수문학적 가뭄 평가)

  • Kwon Hyung-Joong;Kim Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.37-43
    • /
    • 2006
  • A hydrological drought index, MSWSI (Modified Surface Water Supply Index) was suggested based on SWSI (Surface Water Supply Index). With the available data of spatially distributed observation station of precipitation, dam storage, stream water level and natural groundwater level, South Korea was divided into 32 regions. This was conducted to represent the calculated index as a spatially distributed information. Monthly MSWSI was evaluated for the period of 1974 and 2001. It is necessary to compare this result with PDSI (Palmer Drought Severity Index) and SPI (Standard Precipitation Index), and check the applicability of the suggested index in our hydrological drought situation.

A STUDY ON EROSION (CAUSES AND REMEDIES) BASED ON HYDROLOGICAL DATA

  • K.M. Ibe, Sr;H. Krynen
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.269-276
    • /
    • 2001
  • The project concentrates on an hydrological analysis. The analysis consists of rainfall, infiltration, Determination of runoff and sediment yield. The risque of erosion and the control measures are related to the slopes and land use. Therefore the first approach to erosion must be correct land use based on land classification. Basically there are two types of mechanical protection works; Drainage and Storage. Realization of a drainage system will be very costly and therefore temporary storage is preferred. For farmland in flat areas hardly any measures are needed. For farmland on slopes temporary storage can be effected by applying tillage with ridges within contour bunds. Along roads infiltration pits should be constructed and in areas with houses, the solution to avoid runoff will be water harvesting.

  • PDF

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

Studies on the Agri-Hydrological Backgrounds of the All-Weather-Farming Water Resources Facilities to Prevent the Drought-Disasters Permanently (I) (항구적 한해대책을 위한 전천후농업용수시설의 농업수문학적 배경조사 연구 (I) (경북지방 중심))

  • 이기명;김조웅;서승덕;권무남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.73-81
    • /
    • 1980
  • In the light of these analysis of the recorded rainfall data from the meteorological observatories in Kyungpook area, hydraulic and hydrological data based on the representative watershed area and questionnaire or visiting letters to the 21 Land Reclamation Association in Kyungpook province, the hydrological backgrounds being the question to the irrigation facilities in Kyungpook Province or nation wide were studied partialy and the system of conservation and management of agricultural water sources facilities, prevention countermeasures to the drought and flood disasters, prediction of available surface waterflow and need or needless of new facilities establishment were reviewed in this paper. In the results, Technical and financial management and conservation investments of the already constructed ficalities should urgently and firstly be considered than the newly being established one.

  • PDF