• Title/Summary/Keyword: hydrogeological properties

Search Result 42, Processing Time 0.039 seconds

A Study on the Applicability of the Hydraulic Test Method Performed at an underground Research Facility in Crystalline Rock (결정질 암반내 지하연구시설에서 수행한 현장수리시험법 적용성 연구)

  • Park, Kyung-Woo;Ko, Nak-Yeol;Ji, Sung-Hoon
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.121-131
    • /
    • 2020
  • In this paper, the transmissivities obtained from the pulse test, the slug test and the constant head test were compared each other to assess an applicability and a reliability of the hydrogeological test method, which are commonly used to derive the hydrogeological properties of a crystalline rock at un underground research facility. When comparing the results of the pulse test and the slug test, the transmissivities were very similar in the entire test section of the medium. However, there was a little discrepancy in the results in the areas where the permeability is relatively high. The results of the constant head test on the same section showed the lower transmissivity than the results of the pulse test and the slug test on the highly permeable section. This difference in permeability was considered to be due to the difference in the radius of the hydraulic effect applied in each hydraulic test. When the heterogenetic distribution of fracture affects the hydrogeological properties on crystalline rock, it is believed that the hydrogeological characteristics can be explained through a constant head test or a constant flow rate test with a large hydraulic effective radius, as well as a pulse and a slug test that can identify hydrogeological properties in a relatively short time.

Hydrogeological Properties of Geological Elements in Geological Model around KURT (KURT 지역에서 지질모델 요소에 대한 수리지질특성)

  • Park, Kyung Woo;Kim, Kyung Su;Koh, Yong Kwon;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2012
  • To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

Synthetic Study on the Geological and Hydrogeological Model around KURT (KURT 주변 지역의 지질모델-수리지질모델 통합 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area.

A Study on Significant Parameters for Efficient Design of Open-loop Groundwater Heat Pump (GWHP) Systems (개방형 지열시스템의 효율적 설계를 위한 영향인자에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Lee, Bo-Hyun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.41-50
    • /
    • 2015
  • Open-loop groundwater heat pump (GWHP) system generally has benefits such as a higher coefficient of performance (COP), lower initial cost, and flexible system size. The hydrogeological conditions in Korea have the potential to facilitate the use of the GWHP system because a large number of monitoring wells show stable groundwater temperatures, shallow water levels, and high well yields. However, few studies have been performed in Korea regarding the GWHP system and the most studies among them dealt with Standing Column Well (SCW). Because the properties of the aquifer have an influence on designing open-loop systems, it is necessary to perform studies on various hydrogeological settings. In this study, the hydrogeological and thermal properties were estimated through various tests in the riverside alluvial layer where a GWHP system was installed. Under different groundwater flow velocities and pumping and injection rates, a sensitivity analysis was performed to evaluate the effect of such properties on the design of open-loop systems. The results showed that hydraulic conductivity and thermal dispersivity of the aquifer are the most sensitive parameters in terms of performance and environmental aspects, and sensitivities of the properties depend on conditions.

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Hydrogeological Characteristics of a Riverine Wetland in the Nakdong River Delta, Korea

  • Jeon, Hang-Tak;Cha, Eun-Ji;Lim, Woo-Ri;Yoon, Sul-Min;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.425-444
    • /
    • 2021
  • Investigating the physical and chemical properties of riverine wetlands is necessary to understand their distribution characteristics and depositional environment. This study investigated the physical (particle size, color, and type) and chemical properties (organic, inorganic, and moisture contents) of sediments in Samrak wetland, located in the Nakdong River estuary area in Busan, South Korea. The particle size analysis indicated that the hydraulic conductivity values for the coarse grain and the mixture of coarse and fine grains ranged from 2.03 to 3.49×10-1 cm s-1 and 7.18×10-3 to 1.24×10-7 cm s-1, respectively. In-situ water quality and laboratory-based chemical analyses and radon-222 measurement were performed on groundwater and surface water in the wetland and water from the nearby Nakdong River. The physical and chemical properties of Samrak wetland was characterized by the sediments in the vertical and lateral direction. The concentrations of chemical components in the wetland groundwater were distinctly higher than those in the Nakdong River water though the wetland groundwater and Nakdong River water equally belonged to the Ca-HCO3 type.

Physical and chemical analyses of ground-water by impacts of tunneling at coastal urban region in Busan (부산시 해안 인근 지역에서의 터널 굴착에 따른 지하수 거동 영향 평가)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Jeong, Ui-Jin;Kim, Jun-Mo;Yoon, Woon-Sang;Chung, Sang-Yong;Lee, Jin-Moo;Woo, Sang-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.457-464
    • /
    • 2005
  • In the case of tunneling, the equilibrium state of hydro-geologic environments destroy and change abruptly in some section of whole works. Specially, it's very possible for seawater to intrude toward the site of tunnel if the field is nearly located in a costal region. In this study, we have evaluated the mechanism related between groundwater flow and seawater intrusion that by impacts of tunneling. Various hydro-geological field tests have performed for getting four representative hydrogeologic properties of geologic formations such as transmissivity (T), storativity(S), longitudial dispersity(${\alpha}_L$), and effective porosity($n_e$). For the effect of tunneling, the numerical model was first simulated based on the governing equation of groundwater flow. The results showed that the maximum drawdown was 17.2m and the total inflow into the tunnel had the range from 0.48 to $3.63m^3/day/m$. Secondly, the three dimensional numerical model was analyzed to investigate a characteristic of seawater intrusion based on the previous simulated results of groundwater flow. The results showed the seawater moved as the range of $200{\sim}220m$ from the initial interface between seawater and groundwater toward the tunnel.

  • PDF

Hydrogeological Properties Around Han River from Water Level Data (한강의 수리시스템과 한강변 대수층의 수리지질 특성)

  • 김윤영;이강근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • Time-lag and amplitudes of the fluctuation of groundwater level are used to determine hydraulic parameters around Han River. The groundwater level at observation wells fluctuates between highest and lowest responding to the Han River level. The factors affecting the groundwater fluctuation are examined. The transmisivity of the Han River alluvium calculated from the measured water table fluctuations measured ranges from 9.39${\times}$10$^1$to 4.02${\times}$10$^3$㎡/day. Based on the hydrogeological data along the river sides, the flow characteristics of groundwater for water level fluctuations were simulated using a ground water flow model MODFLOW.

  • PDF

The Characteristics of Hydrogeological Parameters of Unconsolidated Sediments in the Nakdong River Delta of Busan City, Korea

  • Khakimov, Elyorbek;Chung, Sang Yong;Senapathi, Venkatramanan;Elzain, Hussam Eldin;Son, JooHyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.27-41
    • /
    • 2017
  • This study dealt with the characteristics and the interrelations of hydrogeological parameters such as hydraulic conductivity, dispersivity and effective porosity of unconsolidated sediments for providing the basic data necessary for the planning of the management and preservation of groundwater quality in the Nakdong River Delta of Busan City, Korea. Groundwater quality in this area has been deteriorated due to seawater intrusion, agricultural fertilizer and pesticide, industrial wastewater, and contaminated river water. The physical properties (grain size distribution, sediment type, sorting) and aquifer parameters (hydraulic conductivity, effective porosity, longitudinal dispersivity) were determined from grain size analysis, laboratory permeability test and column tracer test. Among 36 samples, there were 18 Sand (S), 7 Gravelly Sand (gS), 5 Silty Sand (zS), 5 Muddy Sand (mS), and 1 Sandy Silt (sZ). Hydraulic conductivity was determined through a falling head test, and ranged from $9.2{\times}10^{-5}$ to $2.9{\times}10^{-2}cm/sec$ (0.08 to 25.6 m/day). From breakthrough curves, dispersivity was calculated to be 0.35~3.92 cm. Also, effective porosity and average linear velocity were obtained through the column tracer test, and their values were 0.04~0.46 and 1.06E-04~6.49E-02 cm/sec, respectively. Statistical methods were used to understand the interrelations among aquifer parameters of hydraulic conductivity, effective porosity and dispersivity. The relation between dispersivity and hydraulic conductivity or effective porosity considered the sample length, because dispersivity was affected by experimental scale. The relations between dispersivity and hydraulic conductivity or effective porosity were all in inverse proportion for all long and short samples. The reason was because dispersivity was in inverse proportion to the groundwater velocity in case of steady hydrodynamic dispersion coefficient, and groundwater velocity was in proportion to the hydraulic conductivity or effective porosity. This study also elucidated that longitudinal dispersivity was dependent on the scale of column tracer test, and all hydrogeological parameters were low to high values due to the sand quantity of sediments. It is expected that the hydrogeological parameter data of sediments will be very useful for the planning of groundwater management and preservation in the Nakdong River Delta of Busan City, Korea.

Characterization of Area Installing Combined Geothermal Systems : Hydrogeological Properties of Aquifer (복합지열시스템에 대한 부지특성화: 대수층의 수리지질학적 특성)

  • Mok, Jong-Koo;Park, Yu-Chul;Park, Youngyun;Kim, Seung-Kyum;Oh, Jeong-Seok;Seonwoo, Eun-Mi
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2017
  • This study was performed in order to hydrogeological analysis of aquifer, which is a necessary part for evaluating the efficiency of the combined well and open-closed loops geothermal (CWG) systems. CWG systems have been proposed for the effective utilization of geothermal energy by combining open loop geothermal systems and closed loop geothermal systems. Small aperture CWG systems and large aperture CWG systems were installed at a green house land with water curtain facilities in Chungju City. Aquifer tests include pumping tests and step-drawdown tests were conducted to analyse hydrogeological characteristics of aquifer in the study area. The transmissivity was estimated in the range of $13.49{\sim}58.99cm^2/sec$, and the storativity was estimated in the range of $1.13{\times}10^{-5}{\sim}5.20{\times}10^{-3}$. The geochemical analysis showed $Ca^{2+}$ ion and ${HCO_3}^-$ ion were dominant in groundwater. The Langelier Saturation Index and the Ryznar Stability Index showed low scaling potential of groundwater. In the analysis of vertical water temperature change, the geothermal gradient was estimated as $2.1^{\circ}C/100m$, which indicated the aquifer was enough for geothermal systems. In conclusion, groundwater is rich, can stably use geothermal heat, and it is less likely to cause deterioration of thermal energy efficiency by precipitation of carbonate minerals in study area. Therefore, the study area is suitable for installation of the combined geothermal system.