• Title/Summary/Keyword: hydrogeological factors

Search Result 36, Processing Time 0.027 seconds

Groundwater Pollution Susceptibility Assessment of Younggwang Area Using GIS Technique (GIS기법을 이용한 영광지역의 지하수 오염 취약성 평가)

  • 이사로;최순학
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.223-230
    • /
    • 1997
  • DRASTIC system developed by U.S.EPA, is widely used for assessing regional groundwater pollution susceptibility by using hydrogeological factors such as depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, hydraulic conductivity. The system can be applied to site selection of well or waste disposal and landuse for groundwater protection. In this study, hydrogeological spatial database of Younggwang area about topography, drainage, well, geology, soil and landuse was constructed using GIS (Geographic Information System) and regional groundwater pollution susceptibility is analyzed using the spatial database and GIS overlay technique.

  • PDF

Assessment of Landfill Hazard Using the Value-Structured Approach (가치구조화기법에 의한 매립지 유해성 등급화)

  • Hong, Sang-Pyo;Kim, Jung-Wuk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.93-103
    • /
    • 1997
  • LHR(Landfill Site Hazard Ranking Model) was developed for ranking the relative hazard of landfill sites by using the method of value-structured approach. LHR consists of combining a multiattribute decision-making method with a Qualitative risk assessment approach. A pairwise com parisian method was applied to determine weights of landfill site factors related. To determine the hazard of landfill site, hydrogeological factors, waste characteristics factors and receptors factors were evaluated by LHR. LHR can help decision-makers prioritization of remediation of landfill sites through the relatively convenient and concise evaluation method of landfill site features related. LHR focuses mainly on pathways of groundwater and surfacewater for evaluating landfill hazard to receptors including humans. To validiate the applicability of LHR, Nanjido Landfill site, Metropolitan Landfill site, and Hwasung Landfill site were evaluated.

  • PDF

Analysis of Groundwater Pollution Potential and Development of Graphic User Interface using DRASTIC System (DRASTIC을 이용한 지하수 오염 가능성 분석 및 그래픽 사용자 인터페이스 개발연구)

  • 민경덕;이영훈;이사로;김윤종;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.101-109
    • /
    • 1996
  • DRASTIC system was used in this study that was developed by U.S. EPA and is widely used for evaluating relative groundwater pollution potential by using hydrogeological factors. The DRASTIC system can be used for selection of well sites, selection of waste disposal sites and basic data of landuse for groundwater protection, and monitoring purpose and efficient allocation of resource for remediation. This study analyzed regional groundwater pollution potential around Chungju Lake using the DRASTIC system. Hydrogeological factors used in this study are depth to water, net recharge, aquifer media, soil media, slope and hydraulic conductivity. For accurate analysis, lineament density that is extracted from image processing of satellite image is overlaid to the DRASTIC system. Results of this study are mapped so groundwater pollution potential and risk degrees can be understood easily and quickly. A graphic user interface is developed to process the data conveniently.

  • PDF

Case Study of Environmental Impact Assessment about Groundwater Outflow during Railroad Tunnel Construction (철도건설사업시 터널지하수 유출에 관한 환경영향평가 사례 연구)

  • Lee Jeongho;Yoo Heonseok;Lee Young Soo;Park Chang Sug
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.303-308
    • /
    • 2004
  • It is recently reported that the importance of environmental impact assessment(EIA) about groundwater outflow problems is beingy raised in the case of tunnel excavation during railroad construction. The EIA about groundwater outflow into railroad tunnel is generally performed using the results of numerical analysis embodied through groundwater flow modeling program like MODFLOW. The basic data for this modeling include (1) the geological and hydrogeological investigation data along the planned block of tunnel excavation, (2) total amount of outflowed groundwater during tunnel excavation, and (3) the status of groundwater level fluctuation in the water-supply wells distributed in the planned block of tunnel excavation. In this study, the authors analyzed the cases of the computational modeling about groundwater outflow in three planned blocks of railroad tunnel, and suggest the environmental impact factors and mitigation plan during EIA of tunnel excavation in railroad construction.

  • PDF

Hydrogeological Responses to the Canterbury Earthquakes

  • Rutter, H.;Cox, S.;Weir, J.;Palmer, K.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.40-47
    • /
    • 2012
  • Hydrologic responses to the 4September 2010 $M_W$ 7.1 and 22 February 2011 $M_W$ 6.2 Canterbury earthquakes ranged from near instantaneous co-seismic liquefaction and changes in groundwater levels, to more sustained (days to months) changes in river discharge, spring flow and groundwater level. There was some indication of a sustained change in aquifer properties. This paper presents some of the hydrographs from the September and February events, and compares the response to each event, briefly taking into account the location of the bore relative to each earthquake, together with other factors such as borehole depth. Over the months following the September earthquake, a pattern emerged of relatively short-term responses in the shallow aquifers and in the confined aquifer system, close to the coast. A longer term response appears to have occurred in inland, deep bores, where water levels 12 months after the September event were (in some cases) up to 20 metres higher than would have been expected based on simple modelling (see Figure 3). Some examples of these are highlighted.

  • PDF

Verification on the Fracture Size Estimation Using Forward Modeling Approach (순산 모델링 기법을 이용한 단열크기 추정방법 고찰)

  • 김경수;김천수;배대석;정지곤
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • The fracture size among geometric parameters of the fracture system is treated as one of the most important factors in the geotechnical and hydrogeological analysis. However, several uncertainties in data acquisition and analysis pmcess about the fracture size are not clear yet. This study presents the current status on the estimation of the fracture size and verifies the estimating method using forward modeling approach. The factors considered are the variation of fracture intersection probabilities with different assumptions on the orientation of sampling planes and fracture size by using a simulated tleee dimensional fracture network model. If it is possible to analyze precisely the fracture intersection probabilities and the characteristics of probabilistic distnbution fiom cavern walls, outcrops or boreholes,the actual fracture size developed in rock rnass can be estimated confidently.

  • PDF

Groundwater Vulnerability of Some Cemeteries in Gyeonggi Province (경기도 일부 공원묘역의 지하수 오염가능성)

  • Lee, Jae-Hwang;Lee, Jun-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.330-341
    • /
    • 2008
  • The purpose of this study was to investigate the vulnerability for groundwater contamination at the some cemeteries in Gyeonggi Province. Twenty-eight out of 43 cemeteries in Gyeonggi province were selected for this study. The DRASTIC model was applied to those cemeteries, and the reliance of the model was assessed using the water quality data of the target areas. The DRASTIC model was used for the assessment of the potential for groundwater contamination using hydrogeological factors. Seven factors including depth of water, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity of the aquifer were assessed. The DRASTIC index of the study area ranged from 82 to 126 with an average value of $113.99(\pm11.48)$. The DRASTIC index was relatively greater in the northern Gyeonggi province than that in the southern area. The DRASTIC index was similar for the areas with the similar burial rate and burial density. This study demonstrated that burial rate and burial density should be considered along with the 7 basic factors for the evaluation of groundwater vulnerability of the cemeteries.

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

Mechanical damage evolution and a statistical damage constitutive model for water-weak sandstone and mudstone

  • Lu yuan Wu;Fei Ding;Jian hui Li;Wei Qiao
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.45-56
    • /
    • 2024
  • The weakening effect of water on rocks is one of the main factors inducing deformation and failure in rock engineering. To clarify this weakening effect, immersion tests and post-immersion triaxial compression tests were conducted on sandstone and mudstone. The results showed that the strength of water-immersed sandstone decreases with increasing immersion time, exhibiting an exponential relationship. Similarly, the strength of water-immersed mudstone decreases with increasing environmental humidity, also following an exponential relationship. Subsequently, a statistical damage model for water-weakened rocks was proposed, changes in elastic modulus to describe the weakening effect of water. The model effectively simulated the stress-strain relationships of water-affected sandstone and mudstone under compression. The R2 values between the theoretical and experimental peak values ranged from 0.962 to 0.996, and the MAPE values fell between 3.589% and 9.166%, demonstrating the model's effectiveness and reliability. The damage process of water-saturated rocks corresponds to five stages: compaction stage - no damage, elastic stage - minor damage, crack development stage - rapid damage increase, post-peak residual stage - continuous damage increase, and sliding stage - damage completion. This study provides a foundational reference for researching the fracture characteristics of overlying strata during coal mining under complex hydrogeological conditions.

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.