• Title/Summary/Keyword: hydrogen vehicle

Search Result 341, Processing Time 0.024 seconds

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

Advanced Technologies for the Commercialization of Hydrogen Fuel Cell Electric Vehicle (수소연료전지자동차의 최신기술)

  • Cho, Mann;Koo, Young-Duk
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.132-145
    • /
    • 2014
  • There is a general agreement that performance of hydrogen fuel cell vehicle(FCV) with respect to cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015_2020 will satisfy customer expectations. However cost, durability and the lack of refueling infrastructure remain significant barriers. Cost have been dramatically reduced and durability has been enhanced over the past decade, yet are still about twice what appears to be needed sustainable market success. Advanced Technologies for the commercialization of hydrogen FCV were reviewed.

Analysis of Nano-particle and Emissions Characteristics for FTP75 Mode in LPLi Vehicle (FTP75 모드에 의한 LPG액상분사자동차의 배출가스 및 나노입자배출특성)

  • Lee, Ho-Kil;Kim, Yong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.161-167
    • /
    • 2009
  • The regulation of the $CO_2$ emit from vehicles have become much more stringent in recent years. This stringent regulation is more request vehicle manufacturers to develop the alternative fuel vehicles for reducing exhaust emissions. LPG fuel is more clean energy compares with gasoline and diesel fuel. Especially, $CO_2$ emission of LPG Vehicle is less than gasoline vehicle and almost equal to diesel vehicle. For this reason, recently korean government is extending LPG fuel for hybrid car and light duty vehicle. In domestic, Propane is mixing $15{\sim}30%$ to butane for improvement of cold start at winter season. Therefore, In this paper was investigated that the characteristics of emissions according to propane mixing rate with 0, 10, 20, 30% were compared and analyzed by the vehicle test using LPG vehicle according to the FTP75 mode. It was also investigated the characteristics of nano-particle emit with propane mixing rate.

International Standards trend on Hydrogen fuel quality (ISO/TC197/WG12의 수소품질 국제표준화 동향)

  • Cho, Sung-Kook;Cho, Chang-Ae;Lee, Taeck-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.739-743
    • /
    • 2009
  • Japan is leading standards for the hydrogen fuel quality on the PEMFC(Proton Exchange Membrane Fuel Cell) vehicle at ISO/TC197/WG12. However, it has many problems to solve the standard of measurement and the test method. because the standard of measurement which was proposed in Japan is too high to reach the technique for many countries. it might not control standards for the hydrogen fuel quality on the PEMFC vehicle in Korea. So we need to develop the study of standards and the technique of measurement continuously for the International Standards Meeting.

  • PDF

Study on the Evaluation Method of Electrical Isolation Property for Hydrogen Fuel Cell Vehicle in Post Crash (수소연료전지자동차의 충돌시 절연성능 평가방법에 관한 고찰)

  • Lee, Kiyeon;Gil, Hyoungjun;Kim, Dongook;Kim, Dongwoo;Kang, Daechul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.612-618
    • /
    • 2012
  • In this paper, in order to prevent electric shock of high voltage system of HFCV after crash test, insulation performance measurement methods were studied. Under conditions of in-use, insulation performance tests can be divided into measurement method using the vehicle's own RESS as DC voltage source and measurement method using DC voltage from off-vehicle sources. However, these tests can not be applied after a post-crash because parts of high voltage system cover should be removed, and insulation performance can be influenced during these tests. Therefore, we proposed post-crash insulation performance test methods for preventing electric shock through problem analysis of previous post-crash insulation performance tests. Also, test equipment which can measure voltage absence and total energy was developed. We verified performance of the equipment through experiments with vehicle test.

A Study on the Priority of Site Selection for Hydrogen Vehicle Charging Facilities in Seoul Using a Market Demand Prediction Model (시장수요예측 모델을 활용한 서울시 수소차 충전시설의 입지선정 우선순위에 관한 연구)

  • Jin Sick, Kim;Kook Jin, Jang;Joo Yeoun, Lee;Myoung Sug, Jung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • Hydrogen is expected to be widely applied in most sectors within the current energy system, such as transportation and logistics, and is expected to be economically and technologically utilized as a power source to achieve vehiclebon emission reduction. In particular, the construction of hydrogen charging station infrastructure will not only support the distribution of hydrogen electric vehicles, but also play an important role in building a hydrogen logistics system. Therefore, This paper suggest additional charging infrastructure areas in Seoul with a focus on supply according to the annual average growth rate (CAGR), centering on Seoul, where hydrogen vehicles are most widely distributed. As of February 2022, hydrogen charging infrastructures were installed in Gangseo-gu, Gangdong-gu, Mapo-gu, Jung-gu, and Seocho-gu in downtown Seoul. Next, looking at the number of hydrogen vehicles by administrative dong in Seoul from 2018 to 2022, Seocho-gu has the most with 246 as of 2022, and Dongjak-gu has the highest average growth rate of 215.4% with a CAGR of 215.4%. Therefore, as a result of CAGR analysis, Dongjak-gu is expected to supply the most hydrogen vehicles in the future, and Seocho-gu currently has the most hydrogen vehicles, so it is likely that additional hydrogen charging infrastructure will be needed between Dongjak-gu and Seocho-gu.

A Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for a Use of 70MPa Hydrogen Gas Vehicle (70MPa 수소가스차량용 복합소재 압력용기의 응력특성에 관한 안전성 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder for a hydrogen gas vehicle. The composite pressure cylinder in which is composed of an aluminum liner and carbon fiber wound layers contains 104 liter hydrogen gas, and is compressed by a filling pressure of 70 MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 255.2 MPa of an aluminum liner is sufficiently low compared with that of 272 MPa, which is 95% level of a yield stress for aluminum. Also, the composite layers in which are wound on the surface of an aluminum cylinder are safe because the stress ratios from 3.46 to 3.57 in hoop and helical directions are above 2.4 for a minimum safety level. The proposed composite pressure cylinder wound by carbon fibers is useful for 70 MPa hydrogen gas vehicles.

The Study of Comparison of Cooling System for H2 Discharge Station (수소충전용 직접 및 간접 냉각시스템 비교 평가 연구)

  • LEE, HYENCHAN;YI, JONGYEOL;BAE, CHANHYO;HEO, JEONGHO;JEON, JAEYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.163-169
    • /
    • 2019
  • This study is a research to compare efficiency of new cooling system (chiller, pre-cooler) to that of the conventional system at the hydrogen refueling station (HRS). This study includes contents for thermodynamic comparison of cooling system for HRS and comparison of pros and cons of its components. So It is to establish design concept of cooling system of HRS supplying with fuel cell electric vehicle (FCEV). HRS is charging high pressure H2 (700 bar) to FCEV. However cooling system is need to prevent temperature rise in tank. This cooling system consists of pre-cooler and chiller system.

A Study on Value of a Statistical Life and Cost-benefit Analysis about Hydrogen Bus Rollovers Safety Regulation (수소버스 전복 안전기준 도입에 따른 통계적 인명가치 및 비용편익효과 연구)

  • Lim, Seo Hyun;Jang, Jeong Ah;Hong, Sung Jin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.47-53
    • /
    • 2021
  • This study is a study to estimate the VSL (Value of a Statistical Life) and CBA (Cost-benefit analysis) of the rollover safety standard for hydrogen buses, VSL is an economic value concept used to quantify the benefits of avoiding death. CBA shows the effect of cost-benefit, and if B/C is greater than 1, there is a social effect. In order to estimate the VSL and CBA, the hydrogen bus introduction scenario was assumed to be optimistic (20,000 vehicles in 2030), neutral (15,000 vehicles in 2030), and pessimistic (10,000 vehicles in 2030), and the effect of reducing human casualties was estimated. As a result, except for the pessimistic market situation of introducing hydrogen buses (10,000 vehicles in 2030) and the VSL reduction ratio of 10%, all policies were judged to have high cost-benefit effects. These results indicate that the introduction of the rollover safety standard for hydrogen buses is a socially effective policy.

A basic study on the hazard of hydrogen feul cell vehicles in road tunnels (도로터널에서 수소차 위험에 관한 기초적 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.47-60
    • /
    • 2021
  • Hydrogen is a next-generation energy source, and according to the roadmap for activating the hydrogen economy, it is expected that industries to stably produce, store, and transport of hydrogen as well as the supply of hydrogen fuel cell vehicles will be made rapidly. Accordingly, safety measures for accidents of hydrogen vehicles in confined spaces such as tunnels are required. In this study, as part of a study to ensure the safety of hydrogen fuel cell vehicles in road tunnels, a basic investigation and research on the risk of fire and explosion due to gas leakage and hydrogen tank rupture among various hazards caused by hydrogen fuel cell vehicle accidents in tunnels was conducted. The following results were obtained. In the event of hydrogen fuel cell vehicle accidents, the gas release rate depends on the orifice diameter of TPRD, and when the gas is ignited, the maximum heat release rate reaches 3.22~51.36 MW (orifice diameter: 1~4 mm) depending on the orifice diameter but the duration times are short. Therefore, it was analyzed that there was little increase in risk due to fire. As the overpressure of the gas explosion was calculated by the equivalent TNT method, in the case of yield of VCE of 0.2 is applied, the safety threshold distance is analyzed to be about 35 m, and number of the equivalent fatalities are conservatively predicted to reach tens of people.