• Title/Summary/Keyword: hydrogen separation

Search Result 363, Processing Time 0.03 seconds

Research on Improving in Mass Transfer Characteristics by Cathode Wave-Form Channel (Wave 형상 채널을 통한 연료전지 Cathode에서의 물질전달 특성 향상에 관한 연구)

  • Lee, Kyu-Ho;Nam, Ki-Hoon;Byun, Jae-Ki;Choi, Nam-Hyun;Choi, Young-Don
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2011
  • PEMFC (polymer electrolyte membrane fuel cell) is device that generates electricity from hydrogen. It is one of the subjects related to renewable energy and various research has been conducted on the PEMFC. PEMFC has low operating temperature and high efficiency among fuel cells, and is given attention as means for automobile and domestic use. Analysis of flow field pattern in supplying hydrogen and oxygen is part of the research to increase PEMFC efficiency. In this study, separation plate currently used in PEMFC is transformed to wave shape and mass transfer characteristics in the channel is examined through numerical and experimental analysis. Wave shape separation plate yielded 18% increase of efficiency compared to separation plate used in normal channel. And improvements in mass transfer characteristics were verified.

Microstructure Analysis with Preparation Condition of Electrolyte Membrane for High Temperature Electrolysis (고온 수전해 전해질 막의 제막조건에 따른 미세구조 분석)

  • Choi, Ho-Sang;Son, Hyo-Seok;Hwang, Gab-Jin;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2006
  • This study was carried out to analyze the microstructure characteristics of electrolyte membrane through XRD, SEM and AC impedance measurement for using in high temperature steam electrolysis(HTE). It was investigated that thermal stability and electric characteristics by sintering condition using dry and wet process, and confirmed growth of particle and density change by sintering temperature. The sintering temperature and behavior had an effect on the relative density of the ceramic and the average grain size. The more amount of dispersant in organic compound increase, the more the density increased. But the binder was shown opposite phenomenon. It was analyzed that electrolyte resistance and electrical characteristics using AC impedance. The electrical properties of YSZ grain boundary changed with the sintering temperature.

Hydrogen Perm-Selectivity Property of the Palladium Hydrogen Separation Membranes on Porous Stainless Steel Support Manufactured by Metal Injection Molding (금속 사출성형 방식의 다공성 스테인리스 강 지지체에 형성된 팔라듐 수소 분리막의 투과 선택도 특성)

  • Kim, Se-Hong;Yang, Ji-Hye;Lim, Da-Sol;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.98-107
    • /
    • 2017
  • Pd-based membranes have been widely used in hydrogen purification and separation due to their high hydrogen diffusivity and infinite selectivity. However, it has been difficult to fabricate thin and dense Pd-based membranes on a porous stainless steel(PSS) support. In case of a conventional PSS support having the large size of surface pores, it was required to use complex surface treatment and thick Pd coating more than $6{\mu}m$ on the PSS was required in order to form pore free surface. In this study, we could fabricate thin and dense Pd membrane with only $3{\mu}m$ Pd layer on a new PSS support manufactured by metal injection molding(MIM). The PSS support had low surface roughness and mean pore size of $5{\mu}m$. Pd membrane were prepared by advanced Pd sputter deposition on the modified PSS support using fine polishing and YSZ vacuum filling surface treatment. At temperature $400^{\circ}C$ and transmembrane pressure difference of 1 bar, hydrogen flux and selectivity of $H_2/N_2$ were $11.22ml\;cm^{-2}min^{-1}$ and infinity, respectively. Comparing with $6{\mu}m$ Pd membrane, $3{\mu}m$ Pd membrane showed 2.5 times higher hydrogen flux which could be due to the decreased Pd layer thickness from $6{\mu}m$ to $3{\mu}m$ and an increased porosity. It was also found that pressure exponent was changed from 0.5 on $6{\mu}m$ Pd membrane to 0.8 on $3{\mu}m$ Pd membrane.

Composite TiN-Al2O3 Syntheses and Hydrogen Permeability Characteristics Evaluation (복합 TiN-Al2O3 합성과 수소투과도 특성 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.177-183
    • /
    • 2020
  • To utilize hydrogen energy, high-yield, high-purity hydrogen needs to be produced; therefore, hydrogen separation membrane studies are being conducted. The membrane reactor that fabricates hydrogen needs to have high hydrogen permeability, selective permeability, heatresistant and a stable mechanical membrane. Dense membranes of Pd and Pd alloys are usually used, but these have drawbacks associated with high cost and durability. Therefore, many researchers have studied replacing Pd and Pd alloys. Dense TiN membrane is highly selective and can separate high-purity hydrogen. The porous alumina has a high permeation rate but low selectivity; therefore, separating high-purity hydrogen is difficult. To overcome this drawback, the two materials are combined as composite reclamations to produce a separation membrane with a high penetration rate and high selectivity. Accordingly, TiN-alumina was manufactured using a high-energy ball mill. The TiN-alumina membrane was characterized by X-ray diffraction analysis, scanning electron microscopy, and energy dispersive spectroscopy. The hydrogen permeability of the TiN-alumina membrane was estimated by a Sievert-type hydrogen permeation membrane apparatus. Due to the change in the diffusion mechanism, the transmittance value was lower than that of the general TiN ceramic separator.

The Effect of Alloy Microstructure on the Behavior of Pd and Pd-based Alloy towards H2

  • Lee, Hyun Kyu;Noh, Hak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.97-105
    • /
    • 2000
  • The influence of different microstructures and compositional variations on hydrogen absorption by pure Pd, and $Pd_{0.9}Rh_{0.1}$ alloy has been examined from changes in the hydrogen isotherms. The dilute phase solubilities and the plateau pressures are affected by differences in microstructures and compositional variations but the hydrogen capacities at relatively high hydrogen pressures are not affected except for the alloy form which has some phase separation.

  • PDF

Hydrogen Prodution by Sulfur Thermochemical Water Splitting Cycle: Part 1. H2O-SO2-I2 Reaction and Separation (황 - 요오드의 열화학적 물분리에 의한 수소제조연구 Part I. 물-이산화황-요오드 반응 및 분리)

  • Lee, K.I.;Min, B.T.;Kwon, S.G.;Kang, Y.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.1 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • The sulfur-iodine thermochemical water splitting process of GA(General atomic) cycle was studied to produce hydrogen from water by $H_2-I_2-SO_2$ reactions. The experimental scale was 500g based on iodine. The reaction took 100 minutes, products could be separated two liquid phases due to their density difference:HI solution had a density of 2.39~2.61g/cc, and $H_2SO_4$ solution had 1.37~1.38g/cc. The condition of reaction was when weight ratio of $I_2/H_2O$ was 2/1 resulting in good phase separation and productivity.

  • PDF

Gas Separation Membranes - Current Status

  • Puri, Pushpinder S.
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.117-126
    • /
    • 1996
  • Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical, and allied industries. Following their successful commercialization in the late seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications. Numerous systems are in operation today to: recover hydrogen from other purge gas and hydrocarbon streams; adjust the $H_{2}/CO$ ratio in syngas; remove $CO_{2}$ from natural gas; recover helium; dry gas streams; and separate air. Lower cost, ease of operation, operational flexibility and portability are a few of the reasons membrane-based systems are chosen over absorption and cryogenic-based separations in certain applications.

  • PDF