• Title/Summary/Keyword: hydrogen reduction behavior

Search Result 109, Processing Time 0.021 seconds

The Function of Hydrogen Chloride on Methane-Air Premixed Flame (메탄-공기 예혼합 화염에서 염화수소의 역할)

  • Shin, Sung-Su;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.979-987
    • /
    • 2005
  • Numerical simulations were performed at atmospheric pressure in order to understand the effect of additives on flame speed, flame temperature, radical concentrations, $NO_x$ formation, and heat flux in freely propagating $CH_4-Air$ flames. The additives were both carbon dioxide and hydrogen chloride which had a combination of physical and chemical behavior on hydrocarbon flame. In the flame established with the same mole of methane and additive, hydrogen chloride significantly contributed toward the reduction of flame speed, flame temperature, $NO_x$ formation and heat flux by the chemical effect, whereas carbon dioxide mainly did so by the physical effect. The impact of hydrogen chloride on the decrease of the radical concentration was about $1.4\~3.0$ times as large as that of carbon dioxide. Hydrogen chloride had higher effect on the reduction of $EI_{NO}$ than carbon dioxide because of the chemical effect of hydrogen chloride. The reaction, $OH+HCl{\rightarrow}Cl+H_2O$, played an important role in the heat flux from flames added by hydrogen chloride instead of the reaction, $OH+H_2{\rightarrow}H+H_2O$ which was an important reaction in hydrocarbon flames.

Tribological Improvement of Lubricants Using Silicone Rubber Powders in Hydrogen Compressors

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.78-83
    • /
    • 2024
  • The development of eco-friendly alternative energy sources has become a global priority owing to the depletion of fossil fuels and an increase in environmental concerns. Hydrogen energy has emerged as a promising clean energy source, and hydrogen compressors play a crucial role in the storage and distribution of compressed hydrogen. However, harsh operating conditions lead to the rapid deterioration of conventional lubricants in hydrogen compressors, thereby necessitating the development of advanced lubrication technologies. This study introduces micrometer-sized silicone rubber powders as lubricant additives to enhance the lubrication performance of hydraulic oils in hydrogen compressors. We prepare silicone rubber powders by varying the ratio of the silicone rubber base to the curing agent and investigate their effects on interfacial properties, friction behavior, and wear characteristics. The findings reveal that the incorporation of silicone rubber powders positively influences the surface affinity, wettability, friction reduction, and wear resistance of the lubricants on the 304SS substrate. Moreover, we identify the optimal lubricant formulations, with a 15:1 ratio demonstrating the most effective friction reduction and a 5:1 ratio exhibiting the highest wear resistance. The controlled surface modification by the silicone rubber powder and the enhanced interfacial characteristics of the powder-containing lubricants synergistically contribute to the improved lubrication performance. These results indicate the potential of silicone rubber powder additives for the development of long-life lubrication solutions for hydrogen compressors and related applications, ultimately contributing to the advancement of sustainable energy technologies.

Redox Property of the Supported Fe2O3 and WO3 with TPO/TPR (TPO/R를 이용한 [Fe2O3, WO3]/지지체의 산화, 환원 특성 연구)

  • Kim, Jae-Ho;Kang, Kyoung-Soo;Bae, Ki-Kwang;Kim, Young-Ho;Kim, Chang-Hee;Cho, Won-Chul;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.443-450
    • /
    • 2011
  • The three-reactor chemical-looping process (TRCL) for the production of hydrogen from natural gas is attractive for both $CO_2$ capture and hydrogen production. In this study, redox property of $Fe_2O_3$ and $WO_3$ supported with $ZrO_2$ and $MgAl_2O_4$ were studied with temperature programmed oxidation/reduction (TPO/R) experiment. All metal oxides were prepared by ball mill method. Metal oxides supported with $ZrO_2$ showed the good redox property in TPO and TPR tests. Reduction behavior was matched well the theoretical reduction mechanism. Metal oxides supported with $MgAl_2O_4$ formed a solid solution ($MgFe_{0.6}Al_{1.4}O_4$, $MgWO_4$). $Fe_2O_3$ showed more narrow reaction range and lower reaction temperature than $WO_3$.

The Hydrogen Reduction Behavior of MoO3 Powder (MoO3 분말의 수소환원거동)

  • Koo, Won Beom;Yoo, Kyoungkeun;Kim, Hanggoo
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The hydrogen reduction behavior of molybdenum oxides was studied using a horizontal-tube reactor. Reduction was carried out in two stages: MoO3 → MoO2 and MoO2 → Mo. In the first stage, a mixed gas composed of 30 vol% H2 and 70 vol% Ar was selected for the MoO3 reduction because of its highly exothermic reaction. The temperature ranged from 550 to 600 ℃, and the residence time ranged from 30 to 150 min. In the second step, pure H2 gas was used for the MoO2 reduction, and the temperature and residence time ranges were 700-750 ℃ and 30-150 min, respectively. The hydrogen reduction behavior of molybdenum oxides was found to be somewhat different between the two stages. For the first stage, a temperature dependence of the reaction rate was observed, and the best curve fittings were obtained with a surface reaction control mechanism, despite the presence of intermediate oxides under the conditions of this study. Based on this mechanism, the activation energy and pre-exponential were calculated as 85.0 kJ/mol and 9.18 × 107, respectively. In addition, the pore size within a particle increases with the temperature and residence time. In the second stage, a temperature dependence of the reaction rate was also observed; however, the surface reaction control mechanism fit only the early part, which can be ascribed to the degradation of the oxide crystals by a volume change as the MoO2 → Mo phase transformation proceeded in the later part.

A Review of Corrosion and Hydrogen Diffusion Behaviors of High Strength Pipe Steel in Sour Environment

  • Kim, Sung Jin;Kim, Kyoo Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.13-20
    • /
    • 2014
  • A brief overview is given of the corrosion and hydrogen diffusion behaviors of high strength pipe steel in sour environment. Firstly, hydrogen adsorption and diffusion mechanism of the pipe steel is introduced. Secondly, the effect of iron sulfide film precipitated as a result of the corrosion reaction on the steel surface on hydrogen reduction reaction and subsequent hydrogen permeation through the steel is discussed. Moreover, the hydrogen diffusion behavior of the pipe steel under tensile stress in both elastic and plastic ranges is reviewed based on a number of experimental permeation data and theoretical models describing the hydrogen diffusion and trapping phenomena in the steel. It is hoped that this paper will result in significant academic contributions in the field of corrosion and hydrogen related problems of the pipe steel used in sour environment.

Fabrication and Characterization of Nano-sized Fe-50 wt% Co Powder from Fe- and Co-nitrate (Fe- 및 Co-질산염을 이용한 Fe-50 wt% Co 나노분말의 합성 및 특성 평가)

  • Riu, Doh-Hyung;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.508-512
    • /
    • 2010
  • The optimum route to fabricate nano-sized Fe-50 wt% Co and hydrogen-reduction behavior of calcined Fe-/Conitrate was investigated. The powder mixture of metal oxides was prepared by solution mixing and calcination of Fe-/Co-nitrate. A DTA-TG and microstructural analysis revealed that the nitrates mixture by the calcination at $300^{\circ}C$ for 2 h was changed to Fe-oxide/$Co_3O_4$ composite powders with an average particle size of 100 nm. The reduction behavior of the calcined powders was analyzed by DTA-TG in a hydrogen atmosphere. The composite powders of Fe-oxide and Co3O4 changed to a Fe-Co phase with an average particle size of 40 nm in the temperature range of $260-420^{\circ}C$. In the TG analysis, a two-step reduction process relating to the presence of Fe3O4 and a CoO phase as the intermediate phase was observed. The hydrogen-reduction kinetics of the Fe-oxide/Co3O4 composite powders was evaluated by the amount of peak shift with heating rates in TG. The activation energies for the reduction, estimated by the slope of the Kissinger plot, were 96 kJ/mol in the peak temperature range of $231-297^{\circ}C$ and 83 kJ/mol of $290-390^{\circ}C$, respectively. The reported activation energy of 70.4-94.4 kJ/mol for the reduction of Fe- and Co-oxides is in reasonable agreement with the measured value in this study.

Investigation of a Hydrogen Mitigation System During Large Break Loss-Of-Coolant Accident for a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Sayareh, Reza;Rahgoshay, Mohammad;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1174-1183
    • /
    • 2016
  • Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

Fabrication and Characterization of Porous Nickel Membrane for High Precision Gas Filter by In-situ Reduction/Sintering Process (In-situ 환원/소결법을 이용한 다공성 니켈 멤브레인 가스필터의 제조 및 평가)

  • Kim, Nam-Hoon;Song, Han-Bok;Choi, Sung-Churl;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.262-267
    • /
    • 2009
  • Disk type porous nickel membrane was fabricated by in-situ reduction/sintering process using compacted NiO/PMMA (PMMA; Polymethyl methacrylate) mixture at $800^{\circ}C$ in hydrogen atmosphere. The porosity (49$\sim$58%) of these membrane was investigated as an amount of PMMA additive. The thermal decomposition and reduction behavior of NiO/PMMA were analyzed by TG/DTA in hydrogen atmosphere and the activation energy for the hydrogen reduction of NiO and thermal degradation of PMMA was calculated as 61.1 kJ/mol, evaluated by Kissinger method. Finally, the filtering performance and pressure drop were measured by particle counting system.

Hydrogen Reduction Behavior of Al2O3/CuO Powder Mixtures Prepared from Different Raw Powders and Their Microstructural Characteristics (원료분말에 따른 Al2O3/CuO 분말혼합체의 수소환원 거동 및 미세조직 특성)

  • Oh Sung-Tag;Kim Jung-Nam;Kang Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.696-700
    • /
    • 2004
  • The reduction behavior of $Al_{2}O_3/CuO$ powder mixtures, prepared from $Al_{2}O_3/CuO$ or $Al_{2}O_3/Cu-nitrate$, was investigated by using thermogravimetry and hygrometry. The powder characteristics were examined by BET, XRD and TEM. Also, the influence of powder characteristics on the microstructure and properties of hot-pressed composites was analyzed. The formation mechanism of nano-sized Cu dispersions was explained based on the powder characteristics and reduction kinetics of oxide powders. In addition, the dependence of the microstructure and mechanical properties of hot-pressed composites on powder characteristics is discussed in terms of the initial size and distribution of Cu particles. The practical implication of these results is that an optimum processing condition for the design of homogeneous microstructure and required properties can be established.