• Title/Summary/Keyword: hydrogen recirculation system

Search Result 35, Processing Time 0.021 seconds

Numerical Study for the Design of Biogas-fired Low Emission Cyclone Incinerator (바이오 가스 소각용 저공해 사이클론 소각기 개발을 위한 수치 해석적 연구)

  • 전영남;김시욱;백원석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.401-410
    • /
    • 2002
  • Concerns for energy conservation, environmental pollution, and the fact that organic wastes account for a major portion of our waste materials, have created the interest of biogas, which usually contains about 60 to 70 percent methane, 30 to 40 percent carbon dioxide, and other gases, including ammonia, hydrogen sulfide, mercaptans and other noxious gases. Cyclone combustors are used for homing a wide range of fuels such as low calorific value gas, waste water, sludge. coal, etc. The 3-dimensional swirling flow, combustion and emission in a tangential inlet cyclone incinerator under different inlet conditions are simulated using a standard k-s turbulence model and ESCRS (Extended Simple Chemically-Reacting System) model. The commercial code Phoenics Ver.3.4 was used for the present work. The main parameters considered in this work are inlet velocity and air to fuel ratio. The results showed that the change of operating conditions had an influence on the shape and size of recirculation zones, mixture fraction and axial velocity which are important factors for combustion efficiency and emission behavior. The application of this kind of computer program seams to be promising as a potential tool for the optimum design of a cyclone combustor with low emission.

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (75kW 용융탄산염 연료전지 시스템의 MBOP 개발)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF

Review of Cryogenic Propellant Densification Technology (극저온 추진제 고밀도화 기술동향 및 적용방안)

  • Cho Namkyung;Han Sangyeop;Kim Youngmog;Jeong Sangkwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.133-144
    • /
    • 2005
  • Enhancements to propellants provide an opportunity to either increase performance of an existing launch vehicle. One of the promising technologies is the use of densified cryogenic propellants such as liquid hydrogen and liquid oxygen. The main advantage of densified cryogenic propellants is the increase in propellant mass fraction. Increased propellant mass fraction means increased payload mass to orbit. This paper reviews the basic principles and current technology trends for cryogenic propellant densification technologies. Several promising densification methods are presented focused on liquid oxygen densification. Engine and vehicle performance analyses are also presented to quantify the potential performance benefits of densified propellants in an overall system. And suggestions of application scheme for satellite launch vehicle is made.

Analysis of EQ pH Condition and Fission Product Removal Capability for Nuclear Power Plant (원전의 내환경기기검증 화학환경 및 핵분열생성물 제거능력 평가)

  • Song, Dong Soo;Ha, Sang Jun;Seong, Je Joong;Jeon, Hwang Yong;Huh, Seong Cheol
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.186-190
    • /
    • 2014
  • Nuclear Power Plants require the control ability of chemical condition (pH) because pH control during transient accident such as LOCA makes an able the fission product removal capability to be maintained, stress corrosion cracking of stainless steel equipment to be prevented and the production of hydrogen by aluminum and zinc to be minimized. An NPP is designed to control the pH of containment spray and sump coolant using the spray additives 30% NaOH in the event of loss of coolant accident. In this paper, the pH of sump coolant of an NPP during LOCA was analyzed and the fission products removal constant and decontamination factor were calculated according to Standard Review Plan 6.5.2 related to spray chemical conditions of pH. The calculated pH value of recirculation mode using the computer code corresponds to 8.09~9.67, which meets the chemical environment regulation requirements. The fission product removal capability caused by containment spray system is performed to provide input to radiation analysis.