• 제목/요약/키워드: hydrogen permeation

검색결과 128건 처리시간 0.028초

Pd 코팅된 $Nb_{56}Ti_{23}Ni_{21}$ 합금 분리막의 수소투과 특성 (The Characteristics of Hydrogen Permeation through Pd-coated $Nb_{56}Ti_{23}Ni_{21}$ Alloy Membranes)

  • 정영민;전성일;박정훈
    • 멤브레인
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2012
  • 니오븀 금속을 기반으로 하는 $Nb_{56}Ti_{23}Ni_{21}$ 합금 분리막의 수소 투과 특성 및 화학적 안정성에 관한 연구를 수행하였다. 이를 위하여 직경 10 mm, 두께 0.5 mm의 $Nb_{56}Ti_{23}Ni_{21}$ 합금 분리막을 제작하였으며, 2가지 조성($H_2$ 100%, $H_2$ 60% + $CO_2$ 40%)의 공급가스를 $450^{\circ}C$의 온도에서 투과시킬 때 압력에 따른 수소 투과 특성에 관한 실험을 진행하였다. 본 실험에서의 최대 수소 투과량은 순수한 수소를 투과시킬 경우 절대압력 3 bar에서 $5.58mL/min/cm^2$로 나타났다. 또한 공급가스 조성에 따른 각각의 경우 모두 Sievert's law에 잘 부합하였으며, 이산화탄소와의 혼합가스 사용시, 투과량은 수소 분압 감소에 비례하여 감소하였다. 투과 실험 후 XRD 분석을 통하여 $Nb_{56}Ti_{23}Ni_{21}$ 합금 분리막의 이산화탄소에 대한 화학적 안정성에 대한 실험을 수행하였다.

니켈 지지체를 이용한 바나듐기 분리막의 수소 투과특성 (Effects of Nickel Supports on Hydrogen Permeability of Vanadium based Membrane)

  • 조경원;최재하;정석;김경일;홍태환;안중우
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.200-205
    • /
    • 2013
  • The separation of hydrogen depends on porosity, diffusivity and solubility in permeation membrane. Dense membrane is always showing a solution diffusion mechanism but porous membrane is not showing. Therefore, porous membrane has a good hydrogen flux due to pore is carried out transferred media. This mechanism is named as the Knudsen diffusion. Hydrogen molecules or hydrogen atoms are diffused along pore that is a mean free path. In this study, complex layer hydrogen permeation membrane was fabricated by hot press process. And then, it was evaluated and calculated to relationship between hydrogen permeability and membrane porosity.

컴팩트 타입 실리카막 공정을 이용한 수소 분리 (Hydrogen Separation by Compact-type Silica Membrane Process)

  • 문종호;배지한;이상진;정종태;이창하
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF

수소 분리를 위한 $V_{99.8}B_{0.2}$ 분리막의 제조와 수소투과특성 (Fabrication and Hydrogen Permeation Properties of $V_{99.8}B_{0.2}$ Alloy Membrane for Hydrogen Separation)

  • 정영민;전성일;박정훈
    • 멤브레인
    • /
    • 제21권4호
    • /
    • pp.345-350
    • /
    • 2011
  • 보론이 도프된 바나듐 합금 분리막은 아직까지 연구된 적이 없다. 본 연구에서는 팔라듐이 코팅된 새로운 $V_{99.8}B_{0.2}$ 조성의 합금 분리막을 합성하여 수소 투과 특성 및 화학적 안정성에 대하여 연구를 수행하였다. 순수 수소, 수소와 이산화탄소의 혼합가스를 $400^{\circ}C$, 절대압력 1.0~3.0 bar에서 공급하여 수소 투과 특성을 알아보았다. 순수 수소를 공급하여 측정한 결과 0.5 mm 두께의 분리막은 최대 $48.5mL/min/cm^2$의 투과량을 보였다. 본 연구 결과는 수성가스 전이반응(WGS)에서 생성된 수소를 분리할 수 있는 비 팔라듐계 수소 분리막의 합성에 새로운 방향을 제시하고 있다.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

Hydrogen Permeation of SiC-CeO2 Composite Membrane by Dip-coating Process

  • Park, Jihye;Jung, Miewon
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.485-488
    • /
    • 2013
  • A SiC-$CeO_2$ composite membrane was successfully fabricated using an ally-hydridopolycarbosilane (AHPCS) binder and treated by dip-coating at 60 times with a $CeO_2$ sol solution. The dip-coated SiC membrane was calcined at 773 K and then sintered at 1173 K under an air atmosphere. The coated membrane was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and a BET surface analysis. The difference in permeation performance between $H_2$ and CO gases was measured by varying the temperature. The permeation flux of $H_2$ on the SiC membrane with layered $CeO_2$ was obtained as $8.45{\times}10^{-6}\;mol/m^2sPa$ at room temperature. The CO permeation flux was $2.64{\times}10^{-6}\;mol/m^2sPa$ at room temperature. The reaction enthalpy (${\Delta}H^{\circ}$) for the hydrogen permeation process was calculated as -7.82 J/mol by Arrhenius plots.

$(Ni_{60}-Nb_{40})_{95}-Pd_5$ 비정질 금속막의 수소투과 특성 (Hydrogen Permeation Properties of $(Ni_{60}-Nb_{40})_{95}-Pd_5$ Amorphous Metallic Membrane)

  • 이덕영;김윤배
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.359-366
    • /
    • 2008
  • Hydrogen as a high-quality and clean energy carrier has attracted renewed and ever-increasing attention around the world in recent years, mainly due to developments in fuel cells and environmental pressures including climate change issues. In this processes for hydrogen production from fossil fuels, separation and purification is a critical technology. $(Ni_{60}-Nb_{40})_{95}-Pd_5$ alloy ingots were prepared by arc-melting the mixture of pure metals in an Ar atmosphere. Melt-spun ribbons were produced by the single-roller melt-spinning technique in an Ar atmosphere. Amorphous structure and thermal behavior were characterized by XRD and DSC. The permeability of the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy membrane was characterized by hydrogen permeation experiments in the temperature range 623 to 773 K and pressure of 2 bars. The maximum hydrogen permeability was $3.54{\times}10^{-9}[mol{\cdot}m^{-1}s^{-1}{\cdot}pa^{-1/2}]$ at 773 K for the $(Ni_{60}-Nb_{40})_{95}-Pd_5$ amorphous alloy.

Effect of Lateral Diffusion on Hydrogen Permeation Measurement in Thick Steel Specimens

  • Traidia, A.;El-Sherik, A.M.;Attar, H.;Enezi, A.
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.201-208
    • /
    • 2017
  • A finite element analysis is proposed to study the effect of specimen dimensions on lateral diffusion of hydrogen during hydrogen permeation flux measurements. The error of measurement on thick specimens because of 1D diffusion approximation may be as much as 70%. A critical condition for accurate measurements is to designate the area of hydrogen monitoring/exit surface smaller than the area of hydrogen charging/entry surface. For thin to medium thickness specimens (ratio of thickness to specimen radius of 5:10 and below), the charging surface should be maximized and the monitoring surface should be minimized. In case of relatively thick specimens (ratio of thickness to specimen radius above of 5:10), use of a hydrogen-diffusion barrier on the specimen boundaries is recommended. It would completely eliminate lateral losses of hydrogen, but cannot eliminate the deviation towards 2D diffusion near the side edges. In such a case, the charging surface should be maximized and the monitoring surface should be as closer in dimension as the charging surface. A regression analysis was carried out and an analytical relationship between the maximum measurement error and the specimen dimensions is proposed.

수소 정제용 팔라듐 합금 분리막 연구 (A Study on the Palladium Alloy Membrane for Hydrogen Separation)

  • 우병일;김동원
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.232-239
    • /
    • 2009
  • This study presented the effect of membrane thickness on hydrogen permeability. Microvoids on the surface of the membrane should not exist for the exact values of hydrogen permeability. Pd-Cu-Ni hydrogen alloy membranes were fabricated by Ni powder sintering, substrate plasma pretreatment, sputtering and Cu reflow process. And this leaded to void-free surface and dense film of Pd-Cu-Ni hydrogen alloy membrane. Hydrogen permeation test showed that hydrogen permeability increased from 2.7 to $15.2ml/cm^2{\cdot}min{\cdot}atm^{0.5}$ as membrane thickness decreased from 12 to $4{\mu}m$. This represented the similar trend as a hydrogen permeability of pure palladium membrane based on solution-diffusion mechanism.

A Review of Corrosion and Hydrogen Diffusion Behaviors of High Strength Pipe Steel in Sour Environment

  • Kim, Sung Jin;Kim, Kyoo Young
    • Journal of Welding and Joining
    • /
    • 제32권5호
    • /
    • pp.13-20
    • /
    • 2014
  • A brief overview is given of the corrosion and hydrogen diffusion behaviors of high strength pipe steel in sour environment. Firstly, hydrogen adsorption and diffusion mechanism of the pipe steel is introduced. Secondly, the effect of iron sulfide film precipitated as a result of the corrosion reaction on the steel surface on hydrogen reduction reaction and subsequent hydrogen permeation through the steel is discussed. Moreover, the hydrogen diffusion behavior of the pipe steel under tensile stress in both elastic and plastic ranges is reviewed based on a number of experimental permeation data and theoretical models describing the hydrogen diffusion and trapping phenomena in the steel. It is hoped that this paper will result in significant academic contributions in the field of corrosion and hydrogen related problems of the pipe steel used in sour environment.