• Title/Summary/Keyword: hydrogen leak

Search Result 81, Processing Time 0.023 seconds

Study on the Consequence Analysis about Leakage Scenarios for Hydrogen Gas (수소가스 누출 시나리오에 따른 피해예측에 관한 연구)

  • Kim, Tae Hun;Oh, Young Dal;Lee, Man Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.159-165
    • /
    • 2014
  • For the hydrogen economy system being tried starting with the 21st century, the fields that was not dealt with so far, such as the safety measure for large leakage accidents, the safety problem at infrastructures like a hydrogen station, the safety problem in terms of automobiles depending on introduction of hydrogen cars, the safety problem in a supply for homes like fuel cells, etc., are being deeply reviewed. In order to establish a safety control system, an essential prerequisite in using and commercializing hydrogen gas as an efficient energy source, it is necessary to conduct an analysis, such as analysis of hydrogen accident examples, clarification of physical mechanisms, qualitative and quantitative evaluation of safety, development of accident interception technologies, etc. This study prepared scenarios of hydrogen gas leakage that can happen at hydrogen stations, and predicted damage when hydrogen leaks by using PHAST for this.

Prediction of a Leakage in a Liquid Hydrogen Pump Using a Finite Element Method (유한요소 해석을 이용한 액화수소 펌프 누설량 예측)

  • HYUNSE KIM;YOUNG-BOG HAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.292-296
    • /
    • 2023
  • Until recently, ships, automobiles, and drones using hydrogen energy are being actively researched. In addition, stations and facilities for hydrogen supply are being developed widely. Among them, a hydrogen pump is necessary for compressing it and transfer to other stations. The liquid hydrogen pump is operated at very high pressure up to 90 MPa. In our research, a reciprocating plunger pump is studied. Especially, a leakage in a liquid hydrogen pump is predicted using a finite element method. As a result, it was found that leak mass flow rates changed from 0.09 to 2.20 kg/h, when the gaps were given from 2 to 6 ㎛. Thus pump efficiencies were calculated from 99.9 to 97.9%, when the gaps changed from 2 to 6 ㎛. These results are useful for the design of the liquid hydrogen pump.

A Study on the Improvement of Safety of Unloading Site by Comparison of Hydrogen Fluoride Leakage Accident (불화수소 누출사고 비교를 통한 하역작업장의 안전성 향상방안에 관한 연구)

  • Woo, Jongwoon;Shin, Changsub
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.32-38
    • /
    • 2018
  • The purpose of this study is to assess quantitatively the amount of leaks and the extent of dispersion in case of a leak at a hydrogen fluoride tank container unloading station, and to suggest a safety improvement plan to prevent recurrence of similar accidents. In 2012, Company H leaks 8 tonnes of tank containers with a maximum storage capacity of 18 Ton, causing it to become a social issue. As a result of calculation using Gaussian plume model, the concentration was estimated to be more than 20ppm from the leak point to 1,321 m radius. The leakage of hydrogen fluoride from the company R in 2014 was estimated to be 11.02 kg, of which 2.9 kg was treated by the scrubber. As a result of calculation using Gaussian plum model, the damage range with a concentration of 20ppm or more from the leak source was estimated to be 69 m in radius. As a result of comparing the above two accidents, it was found that the leakage amount was about 987 times different and the damaged site was more than 19 times different. Therefore, it was concluded that it was necessary to control the wearing of the protective equipment, the enclosure of the unloading site, the installation of the scrubber, and the emergency training to avoid the accidental leakage of a hydrogen fluoride from the unloading site.

A Study of Damage Assessment Caused by Hydrogen Gas Leak in Tube Trailer Storage Facilities (수소 Tube Trailer 저장시설에서의 수소가스 누출에 따른 사고피해예측에 관한 연구)

  • Kim, Jong-Rak;Hwang, Seong-Min;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.32-38
    • /
    • 2011
  • As the using rate of an explosive gas has been increased in the industrial site, the regional residents adjacent to the site as well as the site workers have frequently fallen into a dangerous situation. Damage caused by accident in the process using hydrogen gas is not confined only to the relevant process, but also is linked to a large scale of fire or explosion and it bring about heavy casualties. Therefore, personnel in charge should investigate the kinds and causes of the accident, forecast the scale of damage and also, shall establish and manage safety countermeasures. We, in Anti-Calamity Research Center, forecasted the scope of danger if break out a fire or/and explosion in hydrogen gas facilities of MLCC firing process. We selected piping leak accident, which is the most frequent accident case based on an actual analysis of accident data occurred. We select and apply piping leak accident which is the most frequent case based on an actual accident data as a model of damage forecasting scenario caused by accident. A jet fire breaks out if hydrogen gas leaks through pipe size of 10 mm ${\Phi}$ under pressure of 120 bar, and in case of $4kw/m^2$ of radiation level, the radiation heat can produce an effect on up to distance of maximum 12.45 meter. Herein, we are going to recommend safety security and countermeasures for improvement through forecasting of accident damages.

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES ON FISSION PRODUCTS AND HYDROGEN RISK AFTER THE ACCIDENT AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION

  • NISHIMURA, TAKESHI;HOSHI, HARUTAKA;HOTTA, AKITOSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

A Study on the Response Technique for Toxic Chemicals Release Accidents - Hydrogen Fluoride and Ammonia - (독성 화학물질 누출사고 대응 기술연구 - 불산 및 암모니아 누출을 중심으로 -)

  • Yoon, Young Sam;Cho, Mun Sik;Kim, Ki Joon;Park, Yeon Shin;Hwang, Dong Gun;Yoon, Jun heon;Choi, Kyung Hee
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • Since the unprecedented hydrogen fluoride leak accident in 2012, there has been growing demand for customized technical information for rapid response and chemical accident management agencies including the Ministry of Environment, the National Emergency Management Agency, and the National Police Agency need more information on chemicals and accident management. In this regard, this study aims to provide reliable technical data and guidelines to initial response agencies, similar to accident management technical reports of the US and Canada. In this study, we conducted a questionnaire survey and interviews on initial response agencies like fire stations, police stations, and local governments to identify new information items for appropriate initial response and improvements of current guidelines. We also collected and reviewed the Canada's TIPS, US EPA's hydrogen fluoride documents, domestic and foreign literature on applicability tests of control chemicals, and interview data, and then produced items to be listed in the technical guidelines. In addition, to establish database of on-site technical information, we carried out applicability tests for accident control data including ① emergency shut down devide, safety guard, shut down valve, ground connection, dyke, transfer pipe, scrubber, and sensor; ② literature and field survey on distribution type and transportation/storage characteristics (container identification, valve, ground connection, etc.); ③ classification and identification of storage/transportation facilities and emergency management methodslike leak prevention, chemicals control, and cutoff or bypass of rain drainage; ④ domestic/foreign analysis methods and environmental standards including portable detection methods, test standards, and exposure limits; and ⑤ comparison/evaluation of neutralization efficiency of control chemicals on toxic substances.

Experiments of Continuous Release of Liquid Nitrogen (액체질소의 연속 누출 실험)

  • YONG-SHIK HAN;MYUNGBAE KIM;LE-DUY NGUYEN;MINCHANG KIM;CHANGHYUN KIM;TAE-HOON KIM;KYU HYUNG DO;BYUNG-IL CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.526-534
    • /
    • 2023
  • To evaluate the risk of leakage when using liquid hydrogen, a leakage test was conducted using liquid nitrogen in an outdoor environment rather than a laboratory environment. To assume a real-scale continuous leak, liquid nitrogen was allowed to leak for 5 minutes through a pipe with a diameter of 25.4 mm at a design spill rate of 60 L/min. The measurement system consisted of devices for climate conditions, LN2 spread and vapor clouds. The main experimental results are the liquid pool radius and the concentration of vapor cloud, and the radius of the liquid pool was compared with the numerical analysis results.

The study of manufacturing the oxidizer(Hydrogen Peroxide) feeding system of liquid rocket engine (액체로켓엔진 산화제(과산화수소) 공급계 구축에 관한 연구)

  • Jeon, Jun-Su;Jeong, Jae-Hoon;Kim, Yoo;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.33-36
    • /
    • 2009
  • This study suggests manufacturing and cleaning the feeding system of hydrogen peroxide to use oxidizer of liquid rocket. We established the process of cleaning and passivation in order to minimize the pollution of Hydrogen Peroxide feeding system. And, we verified stability of the manufactured feeding system by leak test & hot test.

  • PDF

Hydraulic Compressor Safety Test for Hydrogen Stations (수소충전소용 유압식 압축기 안전성 시험에 관한 연구)

  • Seong, Hye-Jin;Hwang, Bom-Chan;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.8-15
    • /
    • 2020
  • The government has announced its Hydrogen Economy Roadmap to strengthen global competitiveness on the hydrogen economy by focusing on hydrogen fuel cell electric vehicles and fuel cells. In this regard, the interest on the economics and safety of the infrastructure of hydrogen stations has also increased. In this study, a test bed similar to an actual hydrogen charging facility was built, and a prototype of a piston-type compressor was modeled. In this model, the piston was hydraulically compressed to progressively test leakage, leakage rate, and durability and to check for any malfunction. Moreover, the leakage rate, cylinder leak performance, and compressor operation durability were evaluated for safety; it was confirmed that there were no abnormalities. Nevertheless, an investigation of the long-term use and operating pressure of the compressor is necessary to verify the safety of developing a100-MPa domestic compressor in the future.

The Evaluation of Hydrogen Leakage Safety for the High Pressure Hydrogen System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 수소 누출 안전성 평가)

  • Kim, Hyun-Ki;Choi, Young-Min;Kim, Sang-Hyun;Shim, Ji-Hyun;Hwang, In-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.316-322
    • /
    • 2012
  • A fuel cell vehicle has the hydrogen detection sensors for checking the hydrogen leakage because it use hydrogen for its fuel and can't use a odorant to protect the fuel cell stack. To verify the hydrogen safety of leakage we select the high possible leak points of fittings in hydrogen storage system and test the leaking behavior at them. The hydrogen leakage flow rate is 10, 40, 118 NL/min and the criterion for maximum hydrogen leakage is based on allowing an equivalent release of combustion energy as permitted by gasoline vehicles in FMVSS301. There are total 18EA hydrogen leakage detection sensors installed in test system. we acquire the hydrogen leakage detection time and determine the ranking. Hydrogen leakage detection time decrease when hydrogen leakage flow rate increase. The minimum hydrogen leakage detection time is about 3 seconds when the flow rate is 118NL/min. In this study, we optimize hydrogen sensor position in fuel cell vehicle and verify the hydrogen leakage safety because there is no inflow inside the vehicle.