• 제목/요약/키워드: hydrogen induced cracking

Search Result 33, Processing Time 0.022 seconds

Effect of Microstructure Control of High-Strength Steel on Hydrogen Diffusivity, Trap Activation Energy, and Cracking Resistance in Sour Environments (고강도강의 미세조직 제어가 수소확산계수, 트랩 활성화에너지 및 Sour 환경 내 균열 저항성에 미치는 영향)

  • Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.131-136
    • /
    • 2023
  • The aim of this study was to investigate effects of microstructure control on hydrogen diffusivity, trap activation energy, and cracking behaviors of high-strength steel using a range of experimental techniques. Results of this study showed that susceptibility to hydrogen induced cracking (HIC) was significantly associated with hydrogen diffusivity and trap activation energy, which were primarily influenced by the microstructure. On the other hand, microstructural modifications had no significant impact on electrochemical polarization behavior on the surface at an early corrosion stage. To ensure high resistance to HIC of the steel, it is recommended to increase the cooling rate during normalizing to avoid formation of banded pearlite in the microstructure. However, it is also essential to establish optimal heat treatment conditions to ensure that proportions of bainite, retained austenite (RA), and martensite-austenite (MA) constituents are not too high. Additionally, post-heat treatment at below A1 temperature is desired to decompose locally distributed RA and MA constituents.

Environmental Fatigue Behaviors of CF8M Stainless Steel in 310℃ Deoxygenated Water - Effects of Hydrogen and Microstructure (산소가 제거된 310℃ 순수환경에서 CF8M 주조 스테인리스강의 환경 피로거동 - 수소 및 미세구조의 영향)

  • Jang, Hun;Cho, Pyungyeon;Jang, Changheui;Kim, Tae Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • The effects of environment and microstructure on low cycle fatigue (LCF) behaviors of CF8M stainless steels containing 11% of ferrites were investigated in a $310^{\circ}C$ deoxygenated water environment. The reduction of LCF life of CF8M in a $310^{\circ}C$ deoxygenated water was smaller than 316LN stainless steels. Based on the microstructure and fatigue surface analyses, it was confirmed that the hydrogen induced cracking contributed to the reduction in LCF life for CF8M as well as for 316LN. However, many secondary cracks were found on the boundaries of ferrite phases in CF8M, which effectively reduced the stress concentration at the crack tip. Because of the reduced stress concentration, the accelerated fatigue crack growth by hydrogen induced cracking was less significant, which resulted in the smaller environmental effects for CF8M than 316LN in a $310^{\circ}C$ deoxygenated water.

Analysis of Oxide Film on X65-Line Pile Steel Formed in Hydrogen Induced Cracking Environment by Dynamic Nano-indentation Method (동적 나노압칩법을 이용한 수소유기균열분위기에서 생성된 X65-석유수소용 강관의 산화막 분석)

  • O, Se-Beom;Gang, Bo-Gyeong;Lee, Sang-Heon;Choe, Yong;Kim, Wan-Geun;Go, Seong-Ung;Jeong, Hwan-Gyo;Lee, Chang-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.155-155
    • /
    • 2014
  • The oxide film was formed in hydrogen induced cracking (HIC) environment by potentio-dynamic method. Corrosion potentials and rates of the X-65 and X-80 line pipe steels were -0.3495 $V_{SHE}$, $2.833{\times}10^{-3}A/cm^2$ and 0.2716 $V_{SHE}$ and $2.533{\times}10^{-3}A/cm^2$, respectively. Surface composition analysis of the oxide film contained sulfur. Thermodynamic analysis of the HIC solution chemistry suggested that the oxide phase consisted of iron sulfate. Dynamic nano-indentation method applied to determine nano-hardnesses of the oxide film and base metal hardness.

  • PDF

Analysis of Fracture Surface of API-X-80 Steel Failed by Hydrogen Induced Cracking (수소유기 균열된 APi-X80 강재의 파면 분석)

  • Kim, Ma-Ro;Gu, Da-Yeong;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.124-124
    • /
    • 2015
  • Acoustic microscopy and scanning electron microscopy were applied to non-destructively evaluate the hydrogen-induced cracking of API X-80 steels and to find the initiation time of the crack. The API X-80 steel had the average grain size of about $4-10{\mu}m$. The hardness was reduced from 240 to 202 [Hv] after exposing in HIC environment for 2-days. Friction coefficient and wear loss were 0.745 and 0.392 mm, respectively. Empirical equation of corrosion potential and corrosion rate of the steel with HIC time in $5%NaCl-0.5%CH_3COOH$ at $25^{\circ}C$ were $Eh\;(up)=0.06^*t[day]+0.2951$, $Eh(down)=0.376^*t[day]+0.5938$, respectively. HIC grew with micro-size after 1-day exposure. The HIC tended to propagate on the surface with Al, Si, Ti, and Mn.

  • PDF

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

Study on EEC and SSC of the Electric Resistance Welded Linepipe Steel

  • Kim, Wan Keun;Koh, Seong Ung;Yang, Boo Young;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.96-102
    • /
    • 2007
  • The resistance of the linepipe steel to hydrogen-induced cracking (HIC) and sulfide stress cracking (SSC) is very important for steel to be used in sour oil/gas environments. Welding of steels is necessary to the construction of pipe-line transporting oil/gas. In this study, HIC and SSC resistance of an electric resistance welded (ERW) steel plate which belongs to API X70 grade was evaluated by using NACE TM0284-96A and NACE TM0177-96A methods. HIC and SSC fracturing behavior was investigated by observing fractured surfaces using optical microscopy (OM) and scanning electron microscopy (SEM). It was discussed in terms of metallurgical parameters such as the distribution of primary microstructure, second phases and inclusions. Results showed that the weld joint of ERW steel is more sensitive than base metal to HIC and SSC. This is due to difference in the contribution of metallurgical parameters to HIC and SSC nucleation and propagation.

Effect of Non-Metallic Inclusions and Hot Rolling Process Parameters on Hydrogen Induced Cracking of Linepipe Steels (라인파이프 강재의 수소유기균열에 미치는 열간압연 공정변수의 영향)

  • Koh, Seong Ung;Jung, Hwan Gyo;Kang, Ki Bong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.257-266
    • /
    • 2008
  • AHydrogen induced cracking (HIC) was phenomenologically studied in terms of the effect of nonmetallic inclusions and hot rolling process parameters. By comparing the level of non-metallic inclusions in two different kinds of commercial grade steels having different HIC resistance, the role of non-metallic inclusions in HIC occurrence was investigated. Change in inclusion morphology and distribution during hot rolling was also studied throughout slab, rolling at austenite recrystallization region (roughing mill; RM) and rolling at austenite non-recrystallization region (finish mill; FM). In addition, the contribution of RM and FM parameters to HIC was investigated from the standpoint of change in inclusion morphology during hot rolling processes. As a result, HIC was closely related to the separation of large complex inclusion during hot rolling process. Large complex inclusions originated from the improper Ca treatment, after which equilibrium composition of slag should have resulted in eutectoid composition. By controlling the equilibrium slag composition equivalent to eutectoid one, HIC resistance could be improved due to the reduced size of inclusions. In addition, change in reduction/pass in RM had an effect on HIC resistance of steels while that in FM did not. Increase in the reduction/pass in the latter stage of RM improved HIC resistance of steels by enhancing the void enclosure around inclusions.

Corrosion Failure Analysis of a Biogas Pipe (바이오가스 배관의 부식 파손 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2023
  • The use of biogas is an industrially necessary means to achieve resource circulation. However, since biogas obtained from waste frequently causes corrosion in pipes, it is important to elucidate corrosion mechanisms of the pipes used for biogas transportation. Recently, corrosion failure occurred in a pipe which supplied for the biogas at the speed of 12.5 m/s. Pinholes and pits were found in a straight line along the seamline of the pipe. By using corrosion-damaged samples, residual thickness, microstructure, and composition of oxide film and inclusion were examined to analyze the cause of the failure. It was revealed that the thickness reduction of biogas pipe was ~0.11 mm per year. A thin sulfuric acid film was formed on the surface of the interior of a pipe due to moisture and hydrogen sulfide contained in a biogas. Near the seamline, microstructure was heterogeneous and manganese sulfide (MnS) was found. Pits were generated by micro-galvanic corrosion between the manganese sulfide and the matrix in the interior of the pipe along the seamline. In addition, microcracks formed along the grain boundaries beneath the pits revealed that hydrogen-induced cracking (HIC) also contributed to accelerating the pitting corrosion.