• Title/Summary/Keyword: hydrogen evolution reaction

Search Result 147, Processing Time 0.021 seconds

Fabrication of Densified W-Ti by Reaction Treatment and Spark Plasma Sintering of WO3-TiH2 Powder Mixtures (WO3-TiH2 혼합분말의 반응처리 및 방전 플라스마 소결에 의한 W-Ti 치밀체 제조)

  • Kang, Hyunji;Kim, Heun Joo;Han, Ju-Yeon;Lee, Yunju;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.511-515
    • /
    • 2018
  • W-10 wt% Ti alloys that have a homogeneous microstructure are prepared by thermal decomposition of $WO_3-TiH_2$ powder mixtures and spark plasma sintering. The reduction and dehydrogenation behavior of $WO_3$ and $TiH_2$ are analyzed by temperature programmed reduction and a thermogravimetric method, respectively. The X-ray diffraction analysis of the powder mixture, heat-treated in an argon atmosphere, shows W- oxides and $TiO_2$ peaks. Conversely, the powder mixtures heated in a hydrogen atmosphere are composed of W, $WO_2$ and $TiO_2$ phases at $600^{\circ}C$ and W and W-rich ${\beta}$ phases at $800^{\circ}C$. The densified specimen by spark plasma sintering at $1500^{\circ}C$ in a vacuum using hydrogen-reduced $WO_3-TiH_2$ powder mixtures shows a Vickers hardness value of 4.6 GPa and a homogeneous microstructure with pure W, ${\beta}$ and Ti phases. The phase evolution dependent on the atmosphere and temperature is explained by the thermal decomposition and reaction behavior of $WO_3$ and $TiH_2$.

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

Galvanic Corrosion of Zn/Steel Couple in Aqueous MgCl2

  • Tada, E.;Katakami, S.;Nishikata, A.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.183-186
    • /
    • 2017
  • Galvanic corrosion tests of Zn/steel couples were conducted in 1 M NaCl and $1M\;MgCl_2$ solutions to investigate the impact of magnesium ion on corrosion behavior of the couples. Two types of Zn/steel couples were used for measurements of open circuit potential (OCP) and galvanic current. From the results of OCP transient of Zn/steel couples, the corrosion potential in $1M\;MgCl_2$ was a more positive value than that in 1 M NaCl during the sacrificial dissolution of Zn. However, earlier increase of OCP of the couples in $1M\;MgCl_2$ solution indicates that the sacrificial dissolution rate of Zn in $1M\;MgCl_2$ was enhanced more than that in 1 M NaCl, agreeing with the results on transients of galvanic current. This result is due to that cathodic reaction on the steel surface of the Zn/steel couple was enhanced in $1M\;MgCl_2$ by the occurrence of hydrogen evolution reaction.

High-valence Mo doping for promoted water splitting of Ni layered double hydroxide microcrystals

  • Kyoungwon Cho;Seungwon Jeong;Je Hong Park;Si Beom Yu;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.78-82
    • /
    • 2023
  • The oxygen evolution reaction (OER) is the primary challenge in renewable energy storage technologies, specifically electrochemical water splitting for hydrogen generation. We report effects of Mo doping into Ni layered double hydroxide (Ni-LDH) microcrystal on electrocatalytic activities. In this study, Mo doped Ni-LDH were grown on three-dimensional porous nicekl foam (NF) by a facile solvothermal method. Homogeneous LDH structure on the NF was clearly observed. However, the surface microstructure of the nickel foam began to be irregular and collapsed when Mo precursor is doped. Electrocatalytic OER properties were analyzed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Mo doping used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Mo amount introduced into the Ni LDH was discussed with respect to their OER performance.

Research Trend on Precious Metal-Based Catalysts for the Anode in Polymer Electrolyte Membrane Water Splitting (고분자 전해질막 수전해의 산화 전극용 귀금속 촉매의 연구 동향)

  • Bu, Jong Chan;Jung, Won Suk;Lim, Da Bin;Shim, Yu-Jin;Cho, Hyun-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2022
  • The carbon-neutrality induced by the global warming is important for the modern society. Hydrogen has been received the attention as a new energy source to replace the fossil fuels. Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

NaBH4 Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy (Co-P-B/FeCrAlloy 촉매를 이용한 NaBH4 가수분해 반응)

  • Hwang, Byungchan;Jo, Ara;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Properties of $NaBH_4$ hydrolysis reaction using Co-P-B/FeCrAlloy catalyst and the catalyst durability were studied. Co-P-B/FeCrAlloy catalyst showed low activation energy such as 25.2 kJ/mol in 5 wt% $NaBH_4$ solution, which was similar that of noble metal catalyst. The activation energy increased as the $NaBH_4$ concentration increased. Formation of gel at high concentration of $NaBH_4$ seriously affected hydrogen evolution rate and the catalyst durability. The catalyst loss decreased as reaction temperature increased due to lower gel formation when the concentration of $NaBH_4$ was over 20 wt%. Considering hydrogen generation rate and durability of catalyst, the catalyst supported with FeCrAlloy heat-treated at $1,000^{\circ}C$ without ultra vibration during dipping and calcination after catalyst dipping was best catalyst. To use catalyst more than three times in 25 wt% $NaBH_4$ solution, it should be reacted at higher temperature than $60^{\circ}C$.

The Phase-Shift Method for the Langmuir Adsorption Isotherms at the Noble Metal (Au, Rh) Electrode Interfaces (귀금속(Au, Rh) 전극계면에서 Langmuir 흡착등온식에 관한 위상이동방법)

  • Chun, Jang H.;Jeon, Sang K.;Lee, Jae H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.119-129
    • /
    • 2003
  • The Langmuir adsorption isotherms of the over-potentially deposited hydrogen (OPD H) fur the cathodic $H_2$ evolution reaction (HER) at the poly-Au and $Rh|0.5M\;H_2SO_4$ aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm $({\theta}\;vs.\;E)$ of the OPD H for the cathodic HER at the interfaces. At the poly-Au|0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.3\times10^{-6}$ and 32.2kJ/mol, respectively. At the poly-Rh|0.5M $H_2SO_4$ aqueous electrolyte interface, K and ${\Delta}G_{ads}$ of the OPD H are $4.1\times10^4\;or\;1.2\times10^{-2}$ and 19.3 or 11.0kJ/mol depending on E, respectively. In contrast to the poly-Au electrode interface, the two different Langmuir adsorption isotherms of the OPD H are observed at the poly-Rh electrode interface. The two different Langmuir adsorption isotherms of the OPD H correspond to the two different adsorption sites of the OPD H on the poly-Rh electrode surface.

Reaction of Representative Organic Compounds with Sodium Borohydride in the Presence of Aluminum Chloride (염화알루미늄 존재하에서의 수소화붕소나트륨과 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Leeq;Jin Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 1973
  • The addition of one mole of aluminum chloride to three moles of sodium borohydride in tetrahydrofuran gives a turbid solution with enormously more powerful reducing properties than those of sodium borohydride itself. The reducing properties of this reagent were tested with 49 organic compounds which have representative functional groups. Alcohols liberated hydrogen immediately but showed no sign of hydrogenolysis of alkoxy group. Aldehydes and ketones were reduced rapidly within one hr. Acyl derivatives were reduced moderately, however, carboxylic acids were reduced much more slowly. Esters, lactones and epoxides were reduced readily than sodium borohydride or borane. Tertiary amide was reduced slowly, however, primary amide consumed one hydride for hydrogen evolution but reduction was sluggish. Aromatic nitrile was reduced much more readily than aliphatic nitrile. Nitro compounds were inert to this reagent but azo and azoxy groups were slowly attacked. Oxime was reduced slowly but isocyanate was only partially reduced. Disulfide and sulfoxide were attacked slowly but sulfide and sulfone were inert. Olefin was hydroborated rapidly.

  • PDF

Hydrodynamic and Oxygen Effects on Corrosion of Cobalt in Borate Buffer Solution (Borate 완충용액에서 코발트의 부식에 대한 대류와 산소의 영향)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.5
    • /
    • pp.437-444
    • /
    • 2014
  • The electrochemical corrosion and passivation of Co-RDE in borate buffer solution was studied by Potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of cobalt and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, the rotation speed of Co-RDE, impedance data and the pH dependence of corrosion potential. Based on the EIS data, an equivalent circuit was suggested. In addition, the electrochemical parameters for specific anodic dissolution regions were carefully measured. An induction loop in Nyquist plot measured at the open-circuit potential was observed in the low frequency, and this could be attributed to the adsorption-desorption behavior in the corrosion process.