• Title/Summary/Keyword: hydrogen energy

Search Result 4,222, Processing Time 0.033 seconds

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Fig Manure and Food Waste(I): (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(I): 현장조사 결과 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.91-100
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 13 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of bio-gasification treatment. Consequently, major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas and pretreatment of hydrogen sulfide.

Changes in Color Intensity and Components during Browning Reaction of White Ginseng Water Extract (백삼 물추출물의 갈변반응중 갈색도 및 성분의 변화)

  • Do, Jae-Ho;Kim, Kyung-Hee;Jang, Jin-Gyu;Yang, Jai-Won;Lee, Kwang-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.480-485
    • /
    • 1989
  • Changes of color intensity and components during browning reaction of water extracts from white tail ginseng were investigated. Temperature dependence was described by the Arrhenius relationship with an activation energy of 16kcal/mole. Temperature sensitivities$(Q_{10}\;value)$ for water extracts of ginseng was 1.90 between $70^{\circ}C\;and\;80^{\circ}C$, 1.57 between $80^{\circ}C\;and\;90^{\circ}C$ and 1.46 between $90^{\circ}C\;and\;100^{\circ}C$. pH value of the solution treated at $90^{\circ}C\;and\;100^{\circ}C$ slightly increased with an increase in reaction time. Among ginseng saponins ginsenoside-Re was most unstable against heat-treatment, white diol group saponins were more stable against heat-treatment. Hydrogen donating activity (reducing activity for ${\alpha},\;{\alpha}'-diphenyl-{\beta}-picrylhydrazyl$) and 3,5-dinitrosalicylic acid(DNS) positive substances of browning reaction products increased in proportion to the length of browning reaction time and temperature, whereas folin positive substances decreased by heat-denaturation of ginseng protein at initial reaction time and then increased thereafter.

  • PDF

Enhancement of Manganese Removal Ability from Water Phase Using Biochar of Prinus densiflora Bark (소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상)

  • Kim, Min-Ji;Choi, Jung Hoon;Choi, Tae Ryeong;Choi, Suk Soon;Ha, Jeong Hyub;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.526-531
    • /
    • 2020
  • Manganese ions contained in water phase are acting as a toxic substance in the human body and also known to affect the nervous system. In particular, effective treatment technology is required since manganese removal is difficult due to its high solubility in a wide pH range. In this study, Prinus densiflora bark was chemically modified with hydrogen peroxide, and the modified adsorbent was used for removing manganese ions in an aqueous solution. The modified adsorbent showed high removal capacity of 82.1 and 56.2%, respectively, at conditions of 5 and 10 mg/L manganese ions. Also, the adsorption isotherm from the data was applied to the theoretical equation. As a result, the adsorption behavior of manganese ions was better suited to the Langmuir than Freundlich model, and it was also found from kinematics that the pseudo-second order kinetic model was more suitable. In addition, the changes of Gibbs free energy indicated that the adsorption reaction became more spontaneously with increasing temperature. Consequently, these experimental results may be used as a water treatment technology which can efficiently treat manganese ions contained in water.

Characteristics of Byproduct After NaBH4 Hydrolysis Reaction Using Unsupported Catalyst (비담지 촉매를 이용한 NaBH4 가수분해반응에서 부산물의 특성)

  • Lee, Hye-Ri;Park, Dae-Han;Ju, Won;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for UAV PEMFC (Unmaned Aerial Vehicle Proton Exchange Membrane Fuel Cells). In order to use for UAV, the weight and volume of byproduct should be small after $NaBH_4$ hydrolysis reaction. Therefore, the weight and volume of byproduct were studied after $NaBH_4$ hydrolysis reaction using unsupported catalyst. The effect of catalyst type, concentration of $NaBH_4$, concentration of NaOH and thickness of catalyst pack on the weight and volume of byproduct were studied. Most of byproduct was $NaB(OH)_4$ and superficial volume of byproduct increased due to foam evolved from byproduct. The weight and volume of byproduct were not affected by concentration of NaOH used stabilizer. The weight of byproduct decreased as concentration of $NaBH_4$ solution increased, but maximum volume of byproduct obtained at 23 wt% of $NaBH_4$. Suitable defoaming agent reduced the volume of byproduct.

Study of the Separation and Elution Behavior of Phenols as Priority Pollutants in Reversed Phase Liquid Chromatography (역상 액체 크로마토그래피에서 유기오염물질로서의 페놀류들의 분리 및 용리거동에 관한 연구)

  • Dai Woon Lee;Sun Kyung Lee;Keun Sung Yook;Won Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.287-294
    • /
    • 1989
  • The optimum condition for the separation of priority pollutant phenols using isocratic elution has been determined. The elution behavior of eleven phenols has been also studied to interpret the retention. The reversed phase liquid chromatographic methods were performed on a ${\mu}$-Bondapak $C_{18}$ column with methanol-water, acetonitrile-water, and THF water mixtures as mobile phases. The COF method, where Snyder's solvent triangle concept was combined with a mixture-design statistical technique, was used to optimize the strength and selectivity of solvents for the separation of phenols. The optimum solvent composition, which gives a complete separation of eleven phenols, was found to be $MeOH:ACN:H_2O$ = 7:40:53. The plots of ln k' vs. -${\Delta}H^{\circ}$ and ${\Sigma}{\pi}$ of phenols showed relatively good linearities. Effect of van der Waals volume, pi-energy and hydrogen bonding on the retention of phenols were investigated. The following equation with the correlation coefficient of 0.9927 for ACN-water solvent system was obtained; $log^{k'}=2.515{\times}10^{-2}VWV-1.301{\times}10^{-1}E-3.674{\times}10^{-1}$

  • PDF

Analysis of Voltaic Cell Described in the Science Textbooks of Secondary Schools (중·고등학교 과학 교과서에 제시된 볼타전지에 대한 문제점 분석)

  • Sin, Dong-Hyeok;Lee, Sang-Gwon;Choe, Byeong-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.363-377
    • /
    • 2002
  • The purpose of this study was to improve the problems of the voltaic cell described in the science textbooks of secondary schools. For this purpose, the contents of science textbooks which are related to the voltaic cell were analyzed and the problems which were not explained clearly by theorems were tried to be explained by experiments, and lastly sug-gestions were made toward the improvements regarding the voltaic cell in the science textbooks. The findings are that there are problems on the ways of ensuring whether the voltaic cell operates properly as a chemical battery, on the explanation of why the hydrogen bubbles form at the zinc electrode, on the cell potential, on the unification of the electrode terminology used, and on the mention of the current. Solutions to the problems except the cell potential were suggested. According to the experiment, the theoretical potential was calculated by considering the potentials of redox reactions at the two electrodes of the cell and by taking into account the characteristics of the electrodes such as the work function, ionization energy, stan-dard reduction potential, and electronegativity.The cell potential of the voltaic cell is explained by several factors. In the improved version of the textbook's introduction section to the voltaic cell, it is necessary to describe the voltaic cell his-torically.For the conceptual section, it should be explained in terms of the Daniel cell.

Flotation for Recycling of a Waste Water Filtered from Molybdenite Tailings (몰리브덴 선광광미 응집여과액 재활용을 위한 부유선별 특성)

  • Park, Chul-Hyun;Jeon, Ho-Seok;Han, Oh-Hyung;Kim, Byoung-Gon;Baek, Sang-Ho;Kim, Hak-Sun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Froth flotation using the residual water in the end of flotation process has been performed through controlling of pH. IEP (isoelectric point) of molybdenite and quartz in distilled water was below pH 3 and pH 2.7, respectively and the stabilized range was pH 5~10. In case of a suspension in reusing water, zeta potential of molybdenite decreased to below -10 mV or less at over pH 4 due to residual flocculants. As result of pH control, flotation efficiency in the alkaline conditions was deteriorated by flocculation, resulting from expanded polymer chain, ion bridge of the divalent metal cations ($Ca^{2+}$), and hydrophobic interactions between the nonpolar site of polymer/the hydrophobic areas of the particle surfaces. However, the weak acid conditions (pH 5.5~6) improved the efficiency of flotation as hydrogen ions neutralize polymer chains and then weakened its function. In cleans after rougher flotation, the Mo grade of 52.7% and recovery of 90.1% could be successfully obtained under the conditions of 20 g/t kerosene, 50 g/t AF65, 300 g/t $Na_2SiO_3$, pH 5.5 and 2 cleaning times. Hence, we developed a technique which can continuously supply waste water filtered from tailings into the grinding-rougher-cleaning processes.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power Generation and Stream - Results of the Field Investigation (바이오가스 이용 기술지침 마련을 위한 연구(I) - 현장조사 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to biogas utilization treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 11 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of biogas utilization. Consequently, Major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas, pretreatment of hydrogen sulfide, operation of power generation and steam. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), research the facilities problem through field investigation.

Predictive Thermodynamic Model for Gas Permeability of Gas Separation Membrane (기체 분리막의 투과 특성 예측 모델식 개발)

  • Kim, Jong Hwan;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.619-626
    • /
    • 2007
  • It is of special interest in our membrane separation technology due to its low energy consumption and cost, relatively simple equipment, low investment and operation cost, et al. Full scale utilization of such processes can be widely utilized to the various fields. Using the difference of permeability of gas molecules between the filter layers, it is able to separate effectually pure gases from the mixed gases. In this paper, the membranes of PDMS, ${\gamma}-radiated$ PDMS, PTFE, PTFE-X are chosen to develop the predictive model for the separation of pure gases such as oxygen, nitrogen, hydrogen, and other gases from mixed gases. By utilizing the thermodynamic gas properties($\sigma$, $\varepsilon/k$) and experimental data of gas transport characteristics for different polymer membranes, it is able to develop the predictive model equation under the influence of temperature, pressure and polymer characteristics. Predictive model developed in this research showed good agreement with experimental data of gas permeability characteristics for develop four different polymer membranes. The proposed model can also be extended to the general equation for predicting the separation of gases based on the properties of polymeric membranes.

Current Sensing Trench Gate Power MOSFET for Motor Driver Applications (모터구동 회로 응용을 위한 대전력 전류 센싱 트렌치 게이트 MOSFET)

  • Kim, Sang-Gi;Park, Hoon-Soo;Won, Jong-Il;Koo, Jin-Gun;Roh, Tae-Moon;Yang, Yil-Suk;Park, Jong-Moon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • In this paer, low on-resistance and high-power trench gate MOSFET (Metal-Oxide-Silicon Field Effect Transistor) incorporating current sensing FET (Field Effect Transistor) is proposed and evaluated. The trench gate power MOSFET was fabricated with $0.6{\mu}m$ trench width and $3.0{\mu}m$ cell pitch. Compared with the main switching MOSFET, the on-chip current sensing FET has the same device structure and geometry. In order to improve cell density and device reliability, self-aligned trench etching and hydrogen annealing techniques were performed. Moreover, maintaining low threshold voltage and simultaneously improving gate oxide relialility, the stacked gate oxide structure combining thermal and CVD (chemical vapor deposition) oxides was adopted. The on-resistance and breakdown voltage of the high density trench gate device were evaluated $24m{\Omega}$ and 100 V, respectively. The measured current sensing ratio and it's variation depending on the gate voltage were approximately 70:1 and less than 5.6 %.