• 제목/요약/키워드: hydrogen embrittlement DP steels

검색결과 10건 처리시간 0.031초

수소주입시킨 다상조직강의 Subsurface Zone 내 취성화 거동 (A Behavior of Embrittlement at the Subsurface Zones of Multiphase Steels Charged with Hydrogen)

  • 강계명;박재우;최종운
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.48-53
    • /
    • 2013
  • In the present work, it was investigated a behavior of hydrogen embrittlement at the subsurface zones of 590 DP steels by using the micro-Vickers hardness test. The micro-Vickers hardnessess of DP steels were measured to evaluate the degree of embrittlement as the effective hardening depths of subsurface zones with hydrogen charging conditions. The results showed that the distributions of micro-Vickers hardness in width varied from maximum hardness 239.5 Hv to minimum hardness 174 Hv, while the depth of effective hardening layer at the subsurface zones of DP steels was from $320{\mu}m$ to $460{\mu}m$ with hydrogen charging conditions, respectively. It was proposed that the distribution of microhardness be used as the evaluation index of the degree of embrittlement. But the variations of martensite volume fractions were not affected along depth of hardening at the same changing time, hydrogen charging times were appeared as an effective factor of the degree of embrittlement. Therefore, the micro-Vickers hardness test is an attractive tool for evaluation of hydrogen embrittlement at the subsurface zones of these DP steels.

수소주입된 고강도 DP 박강판의 소형펀치시험결과 분석 (An Analysis of Small Punch Test Conducted with the High Strength Dual Phase Sheet Steels Charged with Hydrogen)

  • 최영철;박재우;강계명
    • 한국표면공학회지
    • /
    • 제46권5호
    • /
    • pp.229-233
    • /
    • 2013
  • The small punch(SP) tests that can be applied to high strength sheet steel in automobile were carried out to evaluate the behavior of hydrogen embrittlement of DP sheet steels. In order to charge hydrogen at DP sheet steels, DP sheet steels were treated by the electrochemical hydrogen charging method under the charging conditions of current densities of 100, 150 and 200 $mA/cm^2$ for charging times of 5, 10, 25 and 50 hrs. Respectively, After hydrogen charging with experimental conditions, SP tests were performed. From the SP results, the correlations between the variation of bulb diameters and bulb heights with the hydrogen charging conditions were analysed. It was shown that the variation of bulb diameters were not significant with the hydrogen embrittlement due to the amounts of hydrogen charging. On the other hand, the bulb heights were observed to decrease with increasing hydrogen contents. It was thought that these results of the variation of bulb shapes after SP tests would be estimated as the index of evaluation of hydrogen embrittlement.

다상조직강의 조직 분율에 따른 수소주입의 영향 (The Influence of Hydrogen Charging with the Volume Fraction of Phases in Dual Phase Steels)

  • 김한상;강계명
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.284-288
    • /
    • 2012
  • A study on microstructure control of multi-phase steel have been implemented to higher strength with improved formability. However, it is well known that the high strength of steel are susceptible to hydrogen embrittlement. The mechanisms of hydrogen embrittlement is caused by complex interactions. In this paper, the test specimens were fabricated to 5 type of 590DP steels at different levels of volume faction. The hydrogen charging was conducted by electrochemical hydrogen-charge method with varying charging time. The relationship between hydrogen concentration and volume fraction of 590DP steel was established by SP test and SEM-fractography. It was shown that the hydrogen amounts charged in 590DP steels increased with increasing the volume faction of austenite. The maximum loads of the 590DP steels in SP test were sharply decreased with increasing hydrogen charging time. The results of SEM-fractography investigation showed typical brittle-fracture surfaces for hydrogen-charged 590DP steels.

고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가 (The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel)

  • 이철치;박재우;강계명
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.

수소주입에 따른 590 MPa급 DP강 표면층의 미소경도와 조직특성 (Micro-Hardnesses and Microstructural Characteristics of Surface Layer of 590MPa DP Steels According to Hydrogen Charging)

  • 강계명;박재우
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.581-585
    • /
    • 2010
  • High strength sheet steels for automobile are seriously compromised by hydrogen embrittlement. This issue has been continuously studied, but the field of interest, which lies between microstructural characteristics and hydrogen behavior with hydrogen charging, has not yet been thoroughly investigated. This study was done to investigate the behavior of hydrogen according to the hydrogen volume fraction on 590MPa grade DP steels, which are developed under hydrogen charging conditions as high strength sheet steels for automobiles. The penetration depths and the mechanical properties, according to charging conditions, were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. It was found that the amount of hydrogen trapping in 590MPa DP steels was related to the austenite volume fraction. It was confirmed that the distribution of micro-hardnesses according to the depth of the subsurface zone under the free surface showed the relationship of the depth of the hydrogen saturation between the charging conditions.

자동차 박강판용 고강도 DP강 표면층의 수소거동 (The Hydrogen Behavior of Surface Layers of High Strength DP Thin Sheet Steels for Automobile)

  • 박재우;강계명
    • 한국가스학회지
    • /
    • 제14권6호
    • /
    • pp.38-43
    • /
    • 2010
  • 자원 부족과 환경규제의 강화에 따라 자동차 강판재의 고강도화와 박강판화가 주요 이슈로 대두되고 있다. 그러나 고강도 강판재 사용에 있어 수소취성은 기계적 성질 저하의 문제가 되고 있다. 본 연구에서는 개발중인 590MPa급 DP강을 대상으로 조성 및 조직특성에 따른 표면층에서의 수소의 거동에 대해 연구하였다. 수소주입은 음극전기분해법을 이용하여 강제 주입시켰고, 수소주입조건에 따른 수소주입량과 표면층 조직관찰 및 미소경도시험 결과의 관계로 부터 표면층의 수소거동을 평가하였다.

전기화학적 방법으로 수소장입시킨 자동차 강판재의 수소 영향 (The Effect of Hydrogen in Automobile High Strength Steel Sheets Charged with Hydrogen by Using Electrochemical Method)

  • 박재우;강계명
    • 한국표면공학회지
    • /
    • 제45권5호
    • /
    • pp.212-217
    • /
    • 2012
  • High strength steel sheets used for automobile outer-panels have been intensively studied for developing a lightweight automobile under a strong pressure of the requirements for enhancing the mileage and energy saving in production of automobile parts. It is known that high strength steels are susceptible to hydrogen embrittlement, The susceptibility to hydrogen embrittlement increases with increasing its strength. However, the effect of hydrogen on the fracture behavior of high strength steels, though investigated extensively, has not been fully understood. In this paper, hydrogen was charged with 590DP steels by electrochemical method and its content was measured by hydrogen determinator with the different charging conditions. It was shown that the SP energy and maximum load decreased with increasing charging time. The results of SEM-fractography investigation for the hydrogen contained samples showed that a small portion of dimples on cleavage-fractured surface were observed and the size of the dimples were decreased with increasing hydrogen charging time.

수소주입시킨 DP박강판의 SP시험과 수소취성 관계 해석 (Analysis of Correlation between the Hydrogen Embrittlement and the Small Punch Test for Hydrogen-charged Dual Phase Steels)

  • 박재우;강계명
    • 한국가스학회지
    • /
    • 제18권1호
    • /
    • pp.61-67
    • /
    • 2014
  • 고강도 DP강의 수소취성 거동을 소형펀치시험을 통해 평가하였다. 이를 위해 첨가원소가 각기 다른 3종의 DP강 시험편에 전기화학적 방법으로 수소를 강제 주입시켰다. 수소주입 후, 수소주입량을 측정하였다. 수소주입량은 마르텐사이트 부피분율에 크게 의존하는 것으로 조사되었다. 전류밀도 150, $200mA/cm^2$ 조건에서 25시간이 포화상태에 도달하는 수소주입조건으로 나타났다. SP시험 후 SP에너지와 SP bulb 형상을 비교한 결과, 수소주입량의 증가에 따라 SP에너지와 SP bulb 높이가 감소하는 것으로 나타났다. 또한 SP bulb 파단면에서는 뚜렷한 facet와 층상형태의 벽개 파단면이 관찰되어 수소취성화를 관찰할 수 있었다.

수소장입시킨 590 MPa DP강의 표면층 물성변화에 관한 수소의 영향 (The Effect of Hydrogen on the Variation of Properties at the Surface Layers of 590 MPa DP Steels Charged with Hydrogen)

  • 최종운;박재우;강계명
    • 한국표면공학회지
    • /
    • 제46권3호
    • /
    • pp.126-132
    • /
    • 2013
  • It was investigated that the effects of hydrogen charging on the properties of 590 MPa Dual Phase(DP) steels at the surface layers. The hydrogen-charging time was changed from 5 to 50 hours and current densities from 100, 150, and 200 $mA/cm^2$, respectively. It was found that the hydrogen content in the specimen was increased with as the charging time and the current density. The microvickers hardness of the subsurface zone was increased from 215.3 HV to 239.5 HV due to the increase in current density and charging time. The comparison of the absorbed energies tested by a small-punch (SP) test showed that the absorbed energy of the specimen was greatly reduced from 436 to 283 $kgf-mm^2$ because of hydrogen embrittlement. It was confirmed that bulb aspects of fracture surface became more brittle with increasing hydrogen content.

소형펀치시험에 의한 5종의 고강도 DP강 수소취성 평가 (Evaluation on Hydrogen Embrittlement of 5 Types of High Strength Dual Phase Steels by Small Punch Test)

  • 최종운;한경구;박재우;강계명
    • 한국가스학회지
    • /
    • 제18권5호
    • /
    • pp.40-46
    • /
    • 2014
  • 전기화학적 방법으로 수소 주입시킨 5종의 고강도 DP강의 수소취성화 정도를 소형펀치시험으로 평가하였다. SP시험 후 SP흡수에너지는, $200mA/cm^2$ 전류밀도 조건의 DP5 시험편에서 수소주입시간이 5hr에서 50hr으로 증가함에 따라 363 kgf-mm에서 209 kgf-mm로 현저히 저하되는 것을 알 수 있었다. 전류밀도와 수소주입시간의 증가에 따라 수소주입량과 SP에너지 저하는 선형적인 상관관계를 갖는 것으로 조사되었다. 또한 SP시험에 의해 생성된 bulb의 높이 변화는 1.79 mm에서 1.59 mm로 낮아지는 것으로 조사되었다. 이는 앞서의 SP 흡수에너지 결과와 유사한 경향으로 나타나, 수소취성평가의 지표로 활용 가능할 것으로 사료된다. 균열 파단부위의 SEM 관찰에서 수소주입량 증가에 따라 파단면은 취성파면 형태로 진행되는 것을 확인할 수 있었다.