• Title/Summary/Keyword: hydrogen damage

Search Result 540, Processing Time 0.027 seconds

The Effect of Carnosine Extracted from Eels Anguilla japonica on Oxidative DNA Damage Induced by Hydrogen Peroxide and the DNA Repair Capacity of Human Leukocytes (뱀장어(Anguilla japonica) 추출 Carnosine이 과산화수소로 유도된 인체 백혈구의 DNA 손상과 Repair에 미치는 효과)

  • Song, Ho-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.520-526
    • /
    • 2017
  • Carnosine was recently reported to protect against the DNA damage induced by oxidative stress. In this study, we investigated the protective effect of eel Anguilla japonica carnosine extracts prepared using different methods (heat treatment extracts, HTEs; ion exchange chromatography, IEC; ultrafiltration permeation, UFP) on leukocyte DNA damage using the comet assay. Human leukocytes were incubated with extracts of eel carnosine at concentrations (of 10, 50, $100{\mu}g/mL$), and then subjected to an oxidative stimulus [$200{\mu}M$ hydrogen peroxide ($H_2O_2$)]. Pretreatment of the cells for 30 min with carnosine significantly reduced the genotoxicity of $H_2O_2$ measured as DNA strand breaks. The protective effects of the three types of extract (HTE, IEC, and UFP) increased with concentration. At the highest concentration (100 g/mL). there were no statistical differences in oxidative damage between each extract treatment and PBS-treated negative controls. When leukocytes were incubated with carnosine for 30 min after exposure to $H_2O_2$. the protective ability of each extract changed. Therefore, eel carnosine inhibits the $H_2O_2$ induced damage to cellular DNA in human leukocytes, supporting the protective effect of this compound against oxidative damage.

Risk Assessment Based on Highway Hydrogen Chloride Gas Leakage Scenario Using GIS (GIS를 활용한 고속도로 염화수소 가스 누출 시나리오 기반 리스크 평가)

  • Kim, Kuyoon;Lee, Jaejoon;Yun, Hongsik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.591-601
    • /
    • 2021
  • As the domestic chemical industry continues to develop, handling and transportation of chemicals increases every year. Road freight in Korea accounts for more than 90%, and most of the chemical transportation is done through roads. These chemical vehicles can lead to major accidents if accidents occur. Transportation vehicles are likely to cause water pollution and soil pollution, which are factors of environmental damage, as well as traffic accidents that are the primary damage. In this work, we write a scenario for hydrogen chloride gas leakage by setting Banpo IC and Seocho IC sections as research areas, and use the ALOHA program to measure the predicted distance and analyze the time when hydrogen chloride gas reached according to the distance. In addition, risk assessment using population density was carried out for areas of damage caused by time using GIS. This suggests the need for prevention and countermeasures in areas of damage.

The properties of low hydrogen content silicon thin films for ELA(Excimer Laser Annealing) (ELA를 위한 저수소화 Si 박막의 특성에 관한 연구)

  • 권도현;류세원;박성계;남승의;김형준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.476-479
    • /
    • 2000
  • In this study, mesh-type PECVD system was suggested to minimize the hydrogen concentration. The main structural difference between the triode system and a conventional system is that a mesh was attached to the substrate holding electrode. We investigated several conditions to compare with conventional PECVD. The main effect of mesh was to minimize the substrate damage by ion bombardment and to enhance the surface reaction to induce hydrogen desorption. It was also found that hydrogen concentration decreased but deposition rate increased as increasing applied dias. Applied DC bias enhanced sputtering process. Intense ion bombardment causes the weakly bonded hydrogen or hydrogen-containing species to leave the growing film and increased adatom mobility. Furthermore, addition of hydrogen gas enhance the surface diffusion of adatom. The structural properties of poly-Si films were analyzed by scanning electron microscopy(SEM).

  • PDF

Fracture Toughness Prediction of API X52 Using Small Punch Test Data in Hydrogen at Low Temperatures (소형펀치 시험을 이용한 API X52 저온 수소환경 파괴인성 예측)

  • Jae Yoon Kim;Ki Wan Seo;Yun Jae Kim;Ki Seok Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.117-129
    • /
    • 2023
  • Hydrogen embrittlement of a pipe is an important factor in hydrogen transport. To characterize hydrogen embrittlement, tensile and fracture toughness tests should be conducted. However, in the case of hydrogen-embrittled materials, it is difficult to perform tests in hydrogen environment, particularly at low temperatures. It would be useful to develop a methodology to predict the fracture toughness of hydrogen-embrittled materials at low temperatures using more efficient tests. In this study, the fracture toughness of API X52 steels in hydrogen at low temperatures is predicted from numerical simulation using coupled finite element (FE) damage analyses with FE diffusion analysis, calibrated by analyzing small punch test data.

Manufacturing of Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition Reactor and Si Wafer Surface Cleaning by Hydrogen Plasma (초고진공 전자 사이클로트론 공명 화학 기상증착장치의 제작과 수소 플라즈마를 이용한 실리콘 기판 표면 세정화)

  • 황석희;태흥식;황기웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.63-69
    • /
    • 1994
  • The Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition(UHV-ECRCVD) system whose base pressure is 1${\times}10^{9}$ torr has been constructed. In-situ cleaning prior to the epitaxial growth was carried out at 56$0^{\circ}C$ by ECR generated uniform hydrogen plasma whose density is $10^{10}/cm{3}$. The natural oxide was effectively removed without damage by applying positive DC bias(+10V) to the substrate. RHEED(Reflection High Energy Electron Diffraction) analysis has been used to confirm the removal of the surgace oxide and the streaky 2$\times$1 reconstruction of the Si surface, and the suppression of the substrate damage is anaylized by X-TEM(cross-sectional Transmission Electron Microscopy). Surface cleaning technique by ECR hydrogen plasma confirmed good quality epitaxial growth at low temperature.

  • PDF

A Basic Study for the Performance Evaluation of a Raman LiDAR Detector for Detecting Hydrogen Gas (수소 가스 검출용 라만 라이다 측정기의 성능 평가를 위한 기초 연구)

  • WONBO CHO;YUNKYU LIM;YANGKYUN KIM;BYOUNGJIK PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.205-211
    • /
    • 2023
  • Hydrogen gas is light and diffuses very quickly. Therefore, when a leakage accident occurs, the damage is great, so a technology that can quickly measure the leakage in the air at a long distance is needed. In order to develop hydrogen gas leaked in the atmosphere in a non-contact manner, an experiment was performed to measure hydrogen gas using a lidar technology using the Raman effect. Hydrogen Raman signals were detected using a UV LED light source, which is a Raman light source, and a spectrometer in the ultraviolet region including an optical filter in the 400-430 nm band. To develop this, a Raman lidar optical structure was designed to measure the hydrogen Raman signal at a certain distance, and the hydrogen Raman spectrum was confirmed using a standard gas to evaluate the performance of this optical structure. The linearity was found to be 0.99 using hydrogen standard gas (10, 50, 100, 500, 1,000 ppm). Accordingly, a Raman lidar capable of measuring hydrogen gas rapidly diffusing in the air in an open state was developed to improve the limitations of existing hydrogen sensors.

Spectroscopic Evaluation on the Chemical Damage of Hair by Hydrogen Peroxide (과산화수소에 의한 모발의 화학적 손상에 관한 분광학적 평가)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.579-581
    • /
    • 2011
  • Spectroscopic evaluation of hair chemical damage was performed by SEM/EDS, CLSM, and FT-IR spectroscopy. In SEM/EDS, hydrogen peroxide treated hair showed the loose packing of surface scales, lower ratio of sulfur element and higher ratio of oxygen atom. In the optical single section by using CLSM, high fluorescent intensity appeared in untreated hair. However, in case of treated hair, low fluorescent intensity appeared. This results the aromatic amino acids which can be autofluorescent were more abundant than bleached hair. FT-IR spectra showed that cysteic acid band intensity was increased by performing the bleaching treatments. These results indicate that the oxidative damage cleaves the S-S bond and results in the lower working force of hair fiber.

Consequence Analysis of Hydrogen Filling Stations based on Cascade Compressing Systems (케스케이드 방식 압축시스템 기반의 수소충전소에 대한 정성적 위험성평가)

  • Ahn, Byeong-Jun;Rhim, Jong-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.13-21
    • /
    • 2021
  • Because of the recent expansion of hydrogen vehicle supply, the installation of hydrogen filling station is expected to gradually expand. This study attempts to predict the damage scale and propose a safer design form based on the scenario that assumes the worst case of a hydrogen station. A Flacs solver using computational fluid dynamics (CFD) was used to predict the damage scale, and the accuracy was verified by comparing it with the experimental results of previous researchers. The damage scale prediction was conducted for hydrogen leakage and explosion, and the prediction target was the KR model based on the measured values. And as a comparative review model, a roofless model was selected without a ceiling. As a result of analyzing the two models, it was possible to confirm the accumulation and retention of hydrogen gas up to 60 vol% or more in the KR model, whereas in the case of the Roofless model, the phenomenon of discharge and diffusion to the outside of the charging station by riding the wall after leakage. I was able to check. In conclusion, it was reviewed that the type of hydrogen charging station without ceiling is more advantageous for safety than the hydrogen filling station model.

Characterization of Surface Damage and Contamination of Si Using Cylindrial Magnetron Reactive Ion Etching

  • Young, Yeom-Geun
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.482-496
    • /
    • 1993
  • Radiation damage and contamination of silicons etched in the $CF_4+H_2$ and $CHF_3$ magnetron discharges have been characterized using Schottky diode characteristics, TEM, AES, and SIMS as a function of applied magnetic field strength. It turned out that, as the magnetic field strength increased, the radiation damage measured by cross sectional TEM and by leakage current of Schottky diodes decreased colse to that of wet dtched samples especially for $CF_4$ plasma etched samples, For $CF_4+H_2$and $CHF_3$ etched samples, hydrogen from the plasmas introduced extended defects to the silicon and this caused increased leakage current to the samples etched at low magnetic field strength conditions by hydrogen passivation. The thickness of polymer with the increasing magnetic field strength and showed the minimum polymer residue thickness near the 100Gauss where the silicon etch rate was maximum. Also, other contaminants such as target material were found to be minimum on the etched silicon surface near the highest etch rate condition.

  • PDF

Hydrogen Treatment Protects against Cell Death and Senescence Induced by Oxidative Damage

  • Han, A Lum;Park, Seong-Hoon;Park, Mi Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.365-371
    • /
    • 2017
  • Hydrogen has potential for preventive and therapeutic applications as an antioxidant. However, micro- and macroparticles of hydrogen in water disappear easily over time. In order to eliminate reactive oxygen species (ROS) related with the aging process, we used functional water containing nanoparticle hydrogen. Nanoparticle hydrogen does not disappear easily and collapse under water after long periods of time. We used murine embryonic fibroblasts that were isolated from 12.5-day embryos of C57BL/6 mice. We investigated the ability of nanoparticle hydrogen in water to suppress hydroxyurea-induced ROS production, cytotoxicity, and the accumulation of ${\beta}-galactosidase$ (an indicator of aging), and promote cell proliferation. The accumulation of ${\beta}-galactosidase$ in the cytoplasm and the appearance of abnormal nuclei were inhibited by daily treatment of cells with hydrogen water. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect of hydrogen water was even more remarkable. Thus, this study showed the antioxidant and anti-senescence effects of hydrogen water. Nanoparticle hydrogen water is potentially a potent anti-aging agent.