• Title/Summary/Keyword: hydrogen bonding interactions

Search Result 114, Processing Time 0.02 seconds

Chiral Recognition in Gas chromatographic Resolution of Amino -$^1H\;and^{13}C$ Nuclear magnetic resonance studies of hydrogen bonding in dinmide chiral stationary phases-

  • Park, Man-Ki;Yang, Jeong-Sun;Sohn, Dong-Hwan;Lee, Mi-Young
    • Archives of Pharmacal Research
    • /
    • v.12 no.1
    • /
    • pp.58-61
    • /
    • 1989
  • Studies of selectivity of hydrogen bond formation in chiral solute-solvent systems have been performed by $^1H\;and\;^{13}C$ nuclear magnetic resonance techniques. These data are correlated with the results of gas chromatographic investigations of the same systems. Interactions between the optically active solvent(N-(N-benzoyl-L-amino acid)-anilide) and optically active solute (N-trifluoroacetyl -L-alanyl isopropyl ester) were examined. NMR evidence indicated that hydrogen bonding interaction occurred between two N-H portion and on peptidyl carbonyl portion in stationary phase and solute molecule on three points. The association constants of solvent-solute interaction were calculated and the structure of the diastereomeric association complex between N-(N-benzoyl-L-valyl)-anilide and N-TFA-L-alanyl isopropyl ester was proposed.

  • PDF

Theoretical Studies of Hydrogen Bond Interactions in 4-Substituted Benzoic Acids Dimers (4-치환된 벤조산 2합체에서의 수소 결합 상호작용에 대한 이론적 연구)

  • Beni, Alireza Salimi;Chermahini, Alireza Najafi;Sharghi, Hashem
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.392-399
    • /
    • 2011
  • Two conformations of benzoic acid derivatives ($NH_2$, OH, H, F, Cl, CN, NO, $NO_2$) have been investigated at MP2, DFT and HF level using the 6-311++G(d,p) basis set. It was found that the cis isomers are more stable. Hydrogen bonding formation of benzoic acids has been estimated from stabilization energies. The calculated hydrogen-bonding energies of dimers showed a cooperative interaction in the cyclic ones. It was found that an electron-releasing group (ERG) into the phenyl rings resulted in the formation of more stable hydrogen bonding. Red shift of O-H bond was found from -565.3 to -589.3 for dimers. The natural bond orbital (NBO) analysis was applied to characterize nature of the interaction.

Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

  • Shim, Youngseon;Kim, Hyung J.;Jung, YounJoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3601-3606
    • /
    • 2012
  • Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium ($BMI^+$), but different anions, hexafluorophosphate ($PF_6{^-}$) and chloride ($Cl^-$). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent $BMI^0Cl^0$, a non-ionic counter-part of $BMI^+Cl^-$. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of $BMI^+Cl^-$ and $BMI^0Cl^0$ shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic $BMI^+Cl^-$, compared with those in more hydrophobic $BMI^+PF_6{^-}$. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.

SOLUBILIZATION OF 4-HYDROXY-$4^1$-NITROSTILBENE IN MICELLAR SOLUTIONS

  • Shin, Dong-Myung;Kim, Yong-In;Kwon, Ohoak;Oh, Yung-Hee
    • Journal of Photoscience
    • /
    • v.2 no.2
    • /
    • pp.89-93
    • /
    • 1995
  • Solvatochromic effects and hydrogen bonding interactions of 4-hydroxy-4'-nitrostilbene(NSOH) were investigated. Electronic transition energies of NSOH have good correlation with Taft's $\pi$$^*$. The hydrogen bonding interactions can be accounted by analysis with equation of $\Delta$E= $\Delta$E$_0$ + s($\pi$$^*$ + d$\delta$) + a$\alpha$ + b$\beta$. From UV-visible absorption maximum energies, $\Delta$E = 81.2 kcal/mole - 6.66($\pi$$^*$ - 0.20$\delta$) - 0.66$\alpha$ - 1.93$\beta$ (corr.=0.970) was obtained, and from fluorescence intensity maximum energies, $\Delta$E= 70.07 kcal/mole - 21.6($\pi$$^*$ - 0.11d) - 1.74$\alpha$ - 2.73$\beta$ (corr.=0.947) was obtained. The micropolarity estimated at the solubilization sites is close to the polarity of water. The apparent Taft's $\pi$$^*$ values of solubilization sites are close to 1. Howcver, the solubilization sites for the fluorescent NSOH is rather nonpolar. Both NSOH and NSO$^-$ can be solubilized in CTAB and CTAC micelles and NSOH is the only species that can be solubilized in SDS and Brij-35 micelles.

  • PDF

DSC and FTIR Studies of Miscible Poly(butylene 2,6-naphthalate)/Poly(4-vinylphenol) Blends (DSC와 FTIR을 이용한 상용성 (폴리부틸렌나프탈레이트/폴리비닐페놀) 블렌드의 연구)

  • 이준열;한지영
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.737-744
    • /
    • 2002
  • Thermodynamic miscibility of the binary blends composed of semi-crystalline poly (butylene 2,6-naphthalate) (PBN) and amorphous poly (4-vinylphenol) (PVPh) was investigated using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. DSC scan results showed that there was a single glass transition temperature (T$\_$g/) for each blend. Crystalline melting temperature (T$\_$m/) depression of the PBN in the blends was also observed with the increase of PVPh content. Both results of the single T$\_$g/ and the depression of T$\_$m/ for the PBN/PVPh blends indicate that the blends are thermodynamically miscible at the molecular level. FTIR spectroscopic analysis confirmed that strong intermolecular hydrogen bonding interactions between the ester carbonyl groups of the PBN and the hydroxyl groups of the PVPh are occurred.

Theoretical Investigation of the Hydrogen-bonded Halide-acetylene Anion Complexes

  • Byeong-Seo Cheong
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • The halide-acetylene anions, X--HCCH (X = F, Cl, and Br) have been studied by using several different ab initio and DFT methods to determine structures, hydrogen-bond energies, vibrational frequencies of the anion complexes. Although the halide-acetylene complexes all have linear equilibrium structures, it is found that the fluoride complex is characterized with distinctively different structure and interactions compared to those of the chloride and bromide complexes. The performance of various density functionals on describing ionic hydrogen-bonded complexes is assessed by examining statistical deviations with respect to high level ab initio CCSD(T) results as reference. The density functionals employed in the present work show considerably varying degrees of performance depending on the properties computed. The performances of each density functional on geometrical parameters related with the hydrogen bond, hydrogen-bond energies, and scaled harmonic frequencies of the anion complexes are examined and discussed based on the statistical deviations.

Template Synthesis, Crystal Structure, and Magnetic Properties of a Dinuclear Copper(II) Complex with Cooperative Hydrogen Bonding

  • Kang, Shin-Geol;Nam, Kwang-Hee;Min, Kil-Sik;Lee, Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1037-1040
    • /
    • 2011
  • The dinuclear complex 1 with cooperative hydrogen bonds can be prepared by the metal-directed reaction of Eq. (2). This work shows that the coordinated hydroxyl group trans to the secondary amino group is deprotonated more readily than that trans to the tertiary amino group and acts as the hydrogen-bond accepter. The lattice water molecules in 1 act as bridges between the two mononuclear units through hydrogen bonds. The complex is quite stable as the dimeric form even in various polar solvents. The complex exhibits a weak antiferromagnetic interaction between the metal ions in spite of relatively long Cu$\cdots$Cu distance. This strongly supports the suggestion that the antiferromagnetic behavior is closely related to the cooperative hydrogen bonds.

Design of Supramolecular Electrolytes for Solid State Dye-sensitized Solar Cells (고체형 염료감응 태양전지용 초분자 전해질 개발)

  • Koh, Jong-Kwan;Koh, Joo-Hwan;Seo, Jin-Ah;Kim, Jong-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.24-27
    • /
    • 2009
  • Solid-state dye-sensitized solar cells (DSSCs) have been constructed employing supramolecular electrolytes with multiple hydrogen bonding. A supramolecule was facilely synthesized by one-pot reaction between the amines of methyl isocytosine (MIC) and the epoxy groups of poly(ethylene glycol diglycidyl ether) (PEGDGE) to produce quadruple hydrogen bonding units. Hydrogen bonding interactions and dissolution behavior of salt in supramolecular electrolytes are investigated. The ionic conductivity of the supramolecular electrolytes with ionic liquid, i.e. 1-methyl-3-propylimidazolium iodide (MPII) reaches $8.5{\times}10^{-5}$ S/cm at room temperature, which is higher than that with metal salt (KI). A worm-like morphology is observed in the FE-SEM micrographs of $TiO_2$ nanoporous layer, due to the connection of $TiO_2$ nanoparticles resulting from adequate coating by electrolytes. DSSCs employing the supramolecular electrolytes with MPII and KI exhibit an energy conversion efficiency of 2.5 % and 0.5 %, respectively, at 100 $mW/cm^2$, indicating the importance of the cation of salt. Solar cell performances were further improved up to 3.7 % upon introduction of poly(ethylene glycol dimethyl ether) (PEGDME) with 500 g/mol.

  • PDF

A Structure-Based Activation Model of Phenol-Receptor Protein Interactions

  • 이경희
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 1997
  • Data from structure/activity studies in vir gene induction system have led to evaluate the working hypothesis of interaction between phenolic inducers and phenol binding proteins. The primary specificity in the association of a phenolic inducer with its receptor in our system is hypothesized to be the hydrogen bonding interactions through the ortho methoxy substituents as well as the proton transfer between the inducer and the binding protein. In this paper the proposed working model for phenol-mediating signal transduction was evaluated in several ways. The importance of the general acid-base catalysis was first addressed by the presence of an acidic residue and a basic residue in the phenol binding protein. Series of compounds were tested for vir gene expression activity to confirm the generation of a strong nucleophile by an acidic residue and an involvement of a basic residue as a proton acceptor. An attempt was made to correlate the pKa values of the phenolic compounds with vir gene induction activities as inducers to further support the proposed proton transfer mechanism. Finally, it was also observed that the regioselectively attached methoxy group on phenol compounds is required as the proper hydrogen bond acceptor.

Dihydrogen Phosphate Selective Anion Receptor Based on Acylhydrazone

  • Pandian, T. Senthil;Kang, Jongmin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2025-2028
    • /
    • 2014
  • Anion receptor 1 based on acylhydrazone has been designed and synthesized. UV-vis and $^1H$ NMR titration showed that receptor 1 is selective receptor for dihydrogen phosphate ($H_2PO_4{^-}$). Dihydrogen phosphate was complexed by the receptor 1 via at least 4 hydrogen bonding interactions, contributing from two amide N-Hs and two imine C-Hs. In addition, nitrogen in the aromatic ring could make 2 additional hydrogen bondings with OH groups in the dihydrogen phosphate. However, the receptor 1 could make only 4 hydrogen bonds with halides. Therefore, receptor 1 could bind anions through hydrogen bonds with a selectivity in the order of $H_2PO_4{^-}$ > $Br^-$ > $Cl^-$ in highly polar solvent such as DMSO.