• Title/Summary/Keyword: hydrogel beads

Search Result 19, Processing Time 0.025 seconds

Production optimization of flying fish roe analogs using calcium alginate hydrogel beads

  • Ha, Bom-Bi;Jo, Eun-Hee;Cho, Suengmok;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.7
    • /
    • pp.30.1-30.7
    • /
    • 2016
  • Due to decreased supplies of marine resources and byproducts, new processing technologies for the development of analogs for natural fishery products are becoming increasingly important in the fishing industry. In the present study, we investigated the optimal processing conditions for flying fish roe analogs based on alginate hydrogels. Optimized processing of these analogs was performed by response surface methodology. The optimal processing conditions for the flying fish roe analogs (based on sphericity) were at a sodium alginate concentration of 2.41 %, calcium chloride solution curing time of 40.65 min, calcium chloride concentration of 1.51 %, and a reactor stir speed of $254{\times}g$. When the experiment was performed under these optimized conditions, the size (mm), sphericity (%), and rupture strength (kPa) of the analogs were $2.2{\pm}0.12$, $98.2{\pm}0.2$, and $762{\pm}24.68$, respectively, indicating physical properties similar to their natural counterparts.

Characteristics of Salt Adsorption by Calcium Alginate Beads (칼슘알긴산비드에 의한 염분의 흡착특성)

  • 방병호;서정숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The adsorption characteristics of sodium chloride into Ca-alginate beads have been investigated and the result were as follows: Sodium chloride uptake by Ca-alginate beads increased with time. The highest uptake volume of sodium chloride was 4.2g after 10 minutes. The uptake volume by Fe, Ca, Ba, and Sr-alginate beads was 5.6g, 4.2g, 4.2g and 4.0g, respectively but in case of Fe-alginate beads, the induced hydrogel beads were very fragile and the strength of Fe-alginate beads were weaker than Ca- and Ba-alginate beads. Mg-alginate bead was not formed and Ca-, Ba- and Sr-alginate beads had a similar uptake volume about 4.2g, respectively. The uptake volume of sodium chloride by CaCl$_2$concentration(0.1M. 0.2M and 1M), curing solution, was 4.8, 4.2g and 4.1g, respectively. The uptake volume by sodium alginate concentration(0.6%, 1% and 2%) was 2.8g, 4.0g, and 4.4g, respectively and Ca-alginate bead size was not effected in uptake sodium chloride. The uptake rate on initial sodium chloride concentration(4%, 8%, 12% and 16%) was 30%, 28%, 27% and 25%, respectively. The uptake rate on basic pH(10.0) was higher than when compared to other neutral pH(6.8) and acidic pH(4.0). The initial uptake velocity of sodium chloride from immobilization beads with salt resistant bacteria was lower than that of non-immobilization beads. The uptake rate of sodium chloride was decreased according to elongation of curing time. Reusability of Ca-alginate beads was possible but according to reutilization, the salt uptake volume of beads was also decreased. The uptake volume of sodium chloride from Doengjang by Ca-alginate beads on time course(3, 6, 12, and 24 hour) was revealed 5g, 6g, 7g and 7g, respectively.

The Removal of Styrene using Immobilized Microorganisms in Hydrogel Beads (미생물 고정화 복합고분자담체를 이용한 Styrene 제거)

  • Song, Ji-Hyeon;Ham, Eun-Yi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.648-653
    • /
    • 2006
  • As an alternative for the traditional materials packed in biofilters treating gaseous VOCs, a novel packing material has been developed and tested. In the packing material(named as Hydrogel Bead, HB), pollutant-degrading microorganisms were immobilized in hydrogel consisted of alginate, polyvinyl alcohol(PVA), and powdered activated carbon. A closed-bottle study showed that the HB rapidly removed gaseous styrene without the losses of adsorption and biodegradation capacity. Biofilter column experiments using the HBs also demonstrated that greater than 95% of removal efficiencies were found at an inlet styrene loading rate of $245g/m^3/hr$, which was higher biofilter performance than other elimination capacity reported earlier. Furthermore, when the inlet styrene concentration increased stepwise, the adsorption played an important role in overall styrene removals. The absorbed styrene was found to be biodegraded in the following low inlet loading condition. Consequently, the new HB material is able to successfully minimize the drawbacks of activated carbon(necessity of regeneration) and biological processes(low removal capacity at dynamic loading conditions), and maximize the overall performance of biofilter systems treating VOCs.

Synthesis and Characteristics of Photo-crosslinkable Hydrogel for Microbial Immobilization (미생물 고정화를 위한 광경화성 하이드로겔의 합성과 특성)

  • Kim, Cho Woong;Lee, Jung Bock;Kim, Du Hyun;Hwang, Jung Min;Cho, Chong Su;Choi, Young Hoon;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.852-856
    • /
    • 1999
  • The objective of this study was to prepare hydrogel beads which were useful microbial immobilization to remove nitrogen and phosphorous in the industrial wastewater. Two different polyols(PEG, PTMG) terminated with photo-crosslinkable methacrylate groups were synthesized. Structures of the prepolymers and the UV cured hydrogels were characterized by using $^1H$-NMR and FT-IR spectroscopy. Water content, mechanical strength and pore sizes of the hydrogels having different MW of polyols and different ratios of PEG/PTMG were investigated. Hydrogels prepared from PEG(MW1000) only or the mixture of PEG(MW1000) and PTMG(MW2900) with 7:3 by weight were considered as potential candidates for the matrix for the immobilization of microorganism.

  • PDF

The effect of crosslinking and dry for the adsorption rate on the chitosan bead (키토산 비드의 교차결합(crosslinking)과 건조공정이 흡착속도에 미치는 영향)

  • Shin, Jeongwoo;Kim, Taehoon;Lee, Youngmin;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.301-309
    • /
    • 2021
  • Chitosan, natural organic polymer, has been applied in water treatment as adsorbent due to non-toxic for human being. The amino group as functional group, can interacts with cation and anion at the same time. The prepared chitosan bead (HCB) was crosslinked to increase chemical stability (HCB-G) and both HCB and HCB-G were prepared to increase physical strength by drying referred to DCB and DCB-G, respectively. The adsorption effect for crosslinking and drying for four types of chitosan bead was tested using pseudo fist order (PFO), pseudo second order (PSO), and intraparticle diffusion model (ID). Regardless of PFO and PSO, the order of K, rate constant, is as followed: HCB > HCB-G > DCB > DCB-G for Cu(II) and phosphate. Drying leading to contraction of bead significantly reduced adsorption rate due to reduce the porosity of chitosan. In addition, crosslingking also negatively effect on adsorption rate. When compared with Cu(II) using hydrogel bead, phosphate showed higher value than Cu(II) for PFO and PSO. The application of ID showed that both hydrogel beads (HCB and HCB-G) obtained a very low R2 ranging to 0.37 to 0.81, while R2 can be obtained to over 0.9 for DCB and DCB-G, indicting ID is appropriate for low adsorption rate.

Effect of pH on Swelling Property of Hyaluronic Acid Hydrogels for Smart Drug Delivery Systems

  • Kim, Jin-Tae;Lee, Deuk-Yong;Kim, Young-Hun;Lee, In-Kyu;Song, Yo-Seung
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.256-262
    • /
    • 2012
  • Hyaluronic acid(HA) hydrogels were synthesized by immersing HA microbeads in phosphate buffered saline solutions having different pH levels to assess the effect of pH on the swelling ratio of HA hydrogels for smart drug delivery systems. No beads were formed when the HA solution(below pH 9) was crosslinked with divinyl sulfone(DVS) because DVS is a basic solution. The variation regarding the size of the microbead was not significant, suggesting that the bead size is not a function of pH(10 ~ 14). However, the pore size of the microbeads decreased with increasing pH from 10 to 14, leading to the surface smoothness and dense network as a result of higher crosslinking. The swelling ratio of hydrogels increased when the pH rose from 2(acidic) to 6(neutral). Afterwards, it decreased with further increasing pH(basic). The lower swelling ratio may be due to the lack of ionization of the carboxyl groups. On the other hand, a higher swelling ratio is likely due to the increased electrostatic repulsions between negatively charged carboxyl groups on different chains. Experimental results suggested that pH-responsive HA hydrogels can be applicable to the controlled drug delivery systems.

Characterization of Cross Linked Hyaluronic Acid Microbeads by Divinyl Sulfone (Divinyl Sulfone으로 가교된 히알루론산 마이크로비드의 특성평가)

  • Kim, Jin-Tae;Lee, Deuk Yong;Jang, Ju-Woong;Kim, Tae-Hyung;Jang, Yong-Wun
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.117-122
    • /
    • 2013
  • Hyaluronic acid(HA) microbeads were synthesized by dropping the sodium hyaluronate(Streptococcus) solutions in NaOH into a solution mixture of divinyl sulfone(DVS) in 2-methyl-1-propanol, followed by stirring, cleaning and drying process at room temperature. The initial experimental conditions are crosslinking time(CLTi) of 5 h, crosslinking temperature(CLTe) of room temperature, injection air pressure(IAPr) of 5 psi, and DVS concentration( DVSc) of 0.2 vol%, respectively. Then, parametric studies were performed by varying the parameters to investigate the morphology, the porosity, the swelling ratio and the size of the beads. The microbead size pattern was not regular to function of the degree of crosslink. It was observed that the swelling ratio, the degree of crosslink, and the pore size can be controlled by adjusting the CLTi, CLTe and DVSc. Among the parameters investigated, the smallest bead size can be achieved by varying the CLTi parameter. The lowest swelling ratio, as an indication of the highest degree of crosslink, can be obtained by varying CLTe.

Affinity Filtration Chromatography of Proteins by Chitosan and Chitin Membranes: 1. Preparation and Characterization of Porous Affinity Membranes (키토산 및 키틴 막에 의한 단백질의 친화 여과 크로마토그래피: 1. 다공성 친화 막의 제조와 특성 평가)

  • Youm Kyung-Ho;Yuk Yeong-Jae
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.39-50
    • /
    • 2006
  • Porous chitosan and chitin membranes were prepared by using silica particles as porogen. Membrane preparation was achieved via the following three steps: (1) chitosan film formation by casting an chitosan solution containing silica particles, (2) preparation of porous chitosan membrane by dissolving the silica particles by immersing the film into an alkaline solution and (3) preparation of porous chitin membrane by acetylation of chitosan membrane with acetic anhydride. The optimum preparation conditions which could provide a chitosan and chitin membranes with good mechanical strength and adequate pure water flux were determined. To allow protein affinity, a reactive dye (Cibacron Blue 3GA) was immobilized on porous chitosan membrane. Binding capacities of affinity chitosan and chitin membranes for protein and enzyme were determined by the batch adsorption experiments of BSA protein and lysozyme enzyme. The maximum binding capacity of affinity chitosan membrane for BSA protein is about 22 mg/mL, and that of affinity chitin membrane for lysozyme enzyme is about 26 mg/mL. Those binding capacities are about $several{\sim}several$ tens times larger than those of chitosan and chitin-based hydrogel beads. Those results suggest that the porous chitosan and chitin membranes are suitable in affinity filtration chromatography for large scale separation of proteins.

Alginate/Carboxymethyl Scleroglucan Hydrogels for Controlled Release of Protein Drugs

  • Lee, Chang-Moon;Jeong, Hwan-Jeong;Kim, Dong-Woon;Lee, Ki-Young
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.429-433
    • /
    • 2008
  • Alginate/carboxymethyl scleroglucan (CMSG) hydrogels were suggested as a novel carrier for the controlled release of protein drugs. The drug release characteristics of alginate hydrogels were improved by CMSG addition. Scleroglucan (Sclg) was carboxymethylated using monochloroacetic acid in aqueous alkaline medium. Alginate/CMSG hydrogels were prepared by dropping the mixture solution of alginate/CMSG into calcium chloride solution. The swelling behaviors and drug release characteristics of the hydrogels were investigated in the buffers of pH 1.2 or 7.4. As the CMSG content increased in the hydrogels, the swelling ratio of the alginate/CMSG hydrogel increased rapidly in the buffer of pH 7.4. At pH 1.2, however, the swelling ratio significantly decreased compared to that at pH 7.4. According to in vitro release tests, only 15% of ovalbumin, investigated as a model protein drug, was released from the alginate/CMSG hydrogels at pH 1.2 within 6 h. At pH 7.4, however, the drug release significantly increased due to the rapid swelling of the hydrogels. The release and swelling behaviors of the hydrogels could be controlled by changing the CMSG content in the hydrogels. These results supported the use of alginate/CMSG hydrogels as a suitable carrier for the controlled release of protein drugs in a pH responsive manner.