• 제목/요약/키워드: hydrodynamic loads

검색결과 135건 처리시간 0.03초

Research of the impact of material and flow properties on fluid-structure interaction in cage systems

  • Mehmet Emin Ozdemir;Murat Yaylaci
    • Wind and Structures
    • /
    • 제36권1호
    • /
    • pp.31-40
    • /
    • 2023
  • This paper investigates the mechanical behavior of full-scale offshore fish cages under hydrodynamic loads. To simulate different cases, different materials were used in the fish cage and analyzed under different flow velocities. The cage system is studied in two parts: net cage and floating collar. Analyses were performed with the ANSYS Workbench program, which allows the Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) method to be used together. Firstly, the fish cage was designed, and adjusted for FSI: Fluid (Fluent) analysis. Secondly, mesh structures were created, and hydrodynamic loads acting on the cage elements were calculated. Finally, the hydrodynamic loads were transferred to the mechanical model and applied as a pressure on the geometry. In this study, the equivalent (von Mises) stress, equivalent strain, and total deformation values of cage elements under hydrodynamic loads were investigated. The data obtained from the analyses were presented as figures and tables. As a result, it has been shown that it is appropriate to use all the materials examined for the net cage and the floating collar.

생태계모델을 이용한 가막만 해역의 환경용량 산정 (The Estimation of Environmental Capacity in the Gamak Bay Using an Eco-hydrodynamic Model)

  • 강훈;김종구
    • 한국환경과학회지
    • /
    • 제15권10호
    • /
    • pp.951-960
    • /
    • 2006
  • The eco-hydrodynamic model was used to estimate the environmental capacity in Gamak Bay. It is composed of the three-dimensional hydrodynamic model for the simulation of water flow and ecosystem model for the simulation of phytoplankton. As the results of three-dimensional hydrodynamic simulation, the computed tidal currents are toward the inner part of bay through Yeosu Harbor and the southern mouth of the bay during the flood tide, and being in the opposite direction during the ebb tide. The computed residual currents were dominated southward flow at Yeosu Harbor and sea flow at mouth of bay, The comparison between the simulated and observed tidal ellipses at three station showed fairly good agreement. The distributions of COD in the Gamak bay were simulated and reproduced by an ecosystem model. The simulated results of COD were fairly good coincided with the observed values within relative error of 1.93%, correlation coefficient(r) of 0.88. In order to estimate the environmental capacity in Gamak bay, the simulations were performed by controlling quantitatively the pollution loads with an ecosystem model. In case the pollution loads including streams become 10 times as high as the present loads, the results showed the concentration of COD to be $1.33{\sim}4.74mg/{\ell}(mean\;2.28mg/{\ell})$, which is the third class criterion of Korean standards for marine water quality In case the pollution loads including streams become 30 times as high as the present loads, the results showed the concentration of COD to be $1.38{\sim}7.87mg/{\ell}(mean\;2.97mg/{\ell})$, which is the third class criterion of Korean standards for marine water quality. In case the pollution loads including streams become 50 times as high as the present loads, the results showed the concentration of COD to be $1.44{\sim}9.80mg/{\ell}(mean\;3.56mg/{\ell})$, which is the third class criterion of Korean standards for marine water quality.

Numerical study on fluid flow by hydrodynamic loads in reactor internals

  • Kim, Da-Hye;Chang, Yoon-Suk;Jhung, Myung-Jo
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.1005-1016
    • /
    • 2014
  • Roles of reactor internals are to support nuclear fuel, provide insertion and withdrawal channels of nuclear fuel control rods, and carry out core cooling. In case of functional loss of the reactor internals, it may lead to severe accidents caused by damage of nuclear fuel assembly and deterioration of reactor vessel due to attack of fallen out parts. The present study is to examine fluid flows in reactor internals subjected to hydrodynamic loads. In this context, an integrated model was developed and applied to two kinds of numerical analyses; one is to analyze periodic loading effect caused by pump pulsation and the other is to analyze random loading effect employing different turbulent models. Acoustic pressure distributions and flow velocity as well as pressure and temperature fields were calculated and compared to establish appropriate analysis techniques.

Wave load resistance of high strength concrete slender column subjected to eccentric compression

  • Jayakumar, M.;Rangan, B.V.
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.287-304
    • /
    • 2014
  • A computer based iterative numerical procedure has been developed to analyse reinforced high strength concrete columns subjected to horizontal wave loads and eccentric vertical load by taking the material, geometrical and wave load non-linearity into account. The behaviour of the column has been assumed, to be represented by Moment-Thrust-Curvature relationship of the column cross-section. The formulated computer program predicts horizontal load versus deflection behaviour of a column up to failure. The developed numerical model has been applied to analyse several column specimens of various slenderness, structural properties and axial load ratios, tested by other researchers. The predicted values are having a better agreement with experimental results. A simplified user friendly hydrodynamic load model has been developed based on Morison equation supplemented with a wave slap term to predict the high frequency non-linear impulsive hydrodynamic loads arising from steep waves, known as ringing loads. A computer program has been formulated based on the model to obtain the wave loads and non-dimensional wave load coefficients for all discretised nodes, along the length of column from instantaneous free water surface to bottom of the column at mud level. The columns of same size and material properties but having different slenderness ratio are analysed by the developed numerical procedure for the simulated wave loads under various vertical thrust. This paper discusses the results obtained in detail and effect of slenderness in resisting wave loads under various vertical thrust.

동수력학 해석 기반 부유식 해양 플랫폼의 동적 운동 및 계류력 산정 (Estimation of Dynamic Motions and Mooring Forces for Floating Type Offshore Platform Based on Hydrodynamic Analysis)

  • 차주환;문창일;송창용
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.48-57
    • /
    • 2012
  • This paper deals with numerical analyses in the context of estimations of hydrodynamic motions and dynamic loads for a floating type offshore platform using some exclusive simulation code such as code for the simulation of a floating type of offshore crane based on multi-body dynamics, along with the commercial code AQWA. Verifications of numerical models are carried out by comparing the RAO results from the simulation code. In the verification analyses, hydrodynamic motions are examined in the frequency domain for the floating type offshore platform according to the mooring lines. Both the hydrodynamic motions and dynamic loads are estimated for floating type offshore platforms equipped with the catenary type and taut mooring lines. A review and comparison are carried out for the numerically estimated results. The structural safety of the connection parts in an offshore structure such as a floating type offshore platform is one of the most important design criteria in view of fatigue life. The dynamic loads in the connecting area between a floating type offshore platform and its mooring lines are estimated in detail according to variations in the mechanical properties of the mooring lines. The dynamic tension load on the mooring lines is also estimated.

장방형 부유구조물에 대한 동유체력-구조응답 특성 (Hydrodynamic-Structural Response Coupling Analysis to a Rectangle Floating Structures)

  • 오영철;김옥석;고재용
    • 해양환경안전학회지
    • /
    • 제18권6호
    • /
    • pp.577-583
    • /
    • 2012
  • 부유구조물은 해양에서 다양한 외력을 경험하게 되며 특히, 파랑하중은 구조물의 설계에 결정적인 지배인자로 간주되고 있다. 이런 구조물은 파장과 크기의 상대적 관계로 소형구조물, 대형구조물 등으로 구분될 수 있으며 전통적으로 소형구조물은 회절발생이 없는 것으로 가정하며 대형구조물은 회절 작용에 따른 관성력만을 고려하여 파랑하중을 산출한다. 따라서 이 연구에서는 해양과 강, 호수 등에서 주로 사용되고 있는 정사각형 부유구조물을 이용하여 동유체력과 구조응답의 상관관계를 파악하여 장방형 부유구조물의 안전성에 대한 영향을 검토하였다.

점원 오염부하 제어에 의한 광양만의 수질관리 (Water Quality Management of Kwangyang Bay by Point Pollution Source Control)

  • 이대인;박청길;조현서
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제4권3호
    • /
    • pp.28-39
    • /
    • 2001
  • 광양만의 수질현황을 파악하고 환경변동에 따른 수질을 예측해서 부영양화를 억제하고 수질 환경회복을 위한 적절한 수질관리대책을 제시하기 위해서 생태ㆍ유체역학 수치모델을 이용하였다 광양만에 대한 점원 오염부하량의 약 90%가 폐수배출부하량이 차지하는 것으로 나타났으며, 부영양화 기준인 Chl. α 10㎍/L이하와 해역수질환경기준 II등급인 COD 2㎎/L이하를 지속적으로 유지하기 위해서는 현재의 점원 오염부하량의 약 35%이상 저감하는 대책이 요구되는 것으로 예측되었다.

  • PDF

Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines

  • Wang, Baowei;Rahmdel, Sajad;Han, Changwan;Jung, Seungbin;Park, Seonghun
    • Wind and Structures
    • /
    • 제18권3호
    • /
    • pp.267-279
    • /
    • 2014
  • Hydrodynamic analyses of classic and truss spar platforms for floating offshore wind turbines (FOWTs) were performed in the frequency domain, by considering coupling effects of the structure and its mooring system. Based on the Morison equation and Diffraction theory, different wave loads over various frequency ranges and underlying hydrodynamic equations were calculated. Then, Response Amplitude Operators (RAOs) of 6 DOF motions were obtained through the coupled hydrodynamic frequency domain analysis of classic and truss spar-type FOWTs. Truss spar platform had better heave motion performance and less weight than classic spar, while the hydrostatic stability did not show much difference between the two spar platforms.

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.