• Title/Summary/Keyword: hydrodynamic loads

Search Result 136, Processing Time 0.027 seconds

Research of the impact of material and flow properties on fluid-structure interaction in cage systems

  • Mehmet Emin Ozdemir;Murat Yaylaci
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • This paper investigates the mechanical behavior of full-scale offshore fish cages under hydrodynamic loads. To simulate different cases, different materials were used in the fish cage and analyzed under different flow velocities. The cage system is studied in two parts: net cage and floating collar. Analyses were performed with the ANSYS Workbench program, which allows the Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) method to be used together. Firstly, the fish cage was designed, and adjusted for FSI: Fluid (Fluent) analysis. Secondly, mesh structures were created, and hydrodynamic loads acting on the cage elements were calculated. Finally, the hydrodynamic loads were transferred to the mechanical model and applied as a pressure on the geometry. In this study, the equivalent (von Mises) stress, equivalent strain, and total deformation values of cage elements under hydrodynamic loads were investigated. The data obtained from the analyses were presented as figures and tables. As a result, it has been shown that it is appropriate to use all the materials examined for the net cage and the floating collar.

The Estimation of Environmental Capacity in the Gamak Bay Using an Eco-hydrodynamic Model (생태계모델을 이용한 가막만 해역의 환경용량 산정)

  • Kang, Hoon;Kim, Jong-Gu
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.951-960
    • /
    • 2006
  • The eco-hydrodynamic model was used to estimate the environmental capacity in Gamak Bay. It is composed of the three-dimensional hydrodynamic model for the simulation of water flow and ecosystem model for the simulation of phytoplankton. As the results of three-dimensional hydrodynamic simulation, the computed tidal currents are toward the inner part of bay through Yeosu Harbor and the southern mouth of the bay during the flood tide, and being in the opposite direction during the ebb tide. The computed residual currents were dominated southward flow at Yeosu Harbor and sea flow at mouth of bay, The comparison between the simulated and observed tidal ellipses at three station showed fairly good agreement. The distributions of COD in the Gamak bay were simulated and reproduced by an ecosystem model. The simulated results of COD were fairly good coincided with the observed values within relative error of 1.93%, correlation coefficient(r) of 0.88. In order to estimate the environmental capacity in Gamak bay, the simulations were performed by controlling quantitatively the pollution loads with an ecosystem model. In case the pollution loads including streams become 10 times as high as the present loads, the results showed the concentration of COD to be $1.33{\sim}4.74mg/{\ell}(mean\;2.28mg/{\ell})$, which is the third class criterion of Korean standards for marine water quality In case the pollution loads including streams become 30 times as high as the present loads, the results showed the concentration of COD to be $1.38{\sim}7.87mg/{\ell}(mean\;2.97mg/{\ell})$, which is the third class criterion of Korean standards for marine water quality. In case the pollution loads including streams become 50 times as high as the present loads, the results showed the concentration of COD to be $1.44{\sim}9.80mg/{\ell}(mean\;3.56mg/{\ell})$, which is the third class criterion of Korean standards for marine water quality.

Numerical study on fluid flow by hydrodynamic loads in reactor internals

  • Kim, Da-Hye;Chang, Yoon-Suk;Jhung, Myung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1005-1016
    • /
    • 2014
  • Roles of reactor internals are to support nuclear fuel, provide insertion and withdrawal channels of nuclear fuel control rods, and carry out core cooling. In case of functional loss of the reactor internals, it may lead to severe accidents caused by damage of nuclear fuel assembly and deterioration of reactor vessel due to attack of fallen out parts. The present study is to examine fluid flows in reactor internals subjected to hydrodynamic loads. In this context, an integrated model was developed and applied to two kinds of numerical analyses; one is to analyze periodic loading effect caused by pump pulsation and the other is to analyze random loading effect employing different turbulent models. Acoustic pressure distributions and flow velocity as well as pressure and temperature fields were calculated and compared to establish appropriate analysis techniques.

Wave load resistance of high strength concrete slender column subjected to eccentric compression

  • Jayakumar, M.;Rangan, B.V.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.287-304
    • /
    • 2014
  • A computer based iterative numerical procedure has been developed to analyse reinforced high strength concrete columns subjected to horizontal wave loads and eccentric vertical load by taking the material, geometrical and wave load non-linearity into account. The behaviour of the column has been assumed, to be represented by Moment-Thrust-Curvature relationship of the column cross-section. The formulated computer program predicts horizontal load versus deflection behaviour of a column up to failure. The developed numerical model has been applied to analyse several column specimens of various slenderness, structural properties and axial load ratios, tested by other researchers. The predicted values are having a better agreement with experimental results. A simplified user friendly hydrodynamic load model has been developed based on Morison equation supplemented with a wave slap term to predict the high frequency non-linear impulsive hydrodynamic loads arising from steep waves, known as ringing loads. A computer program has been formulated based on the model to obtain the wave loads and non-dimensional wave load coefficients for all discretised nodes, along the length of column from instantaneous free water surface to bottom of the column at mud level. The columns of same size and material properties but having different slenderness ratio are analysed by the developed numerical procedure for the simulated wave loads under various vertical thrust. This paper discusses the results obtained in detail and effect of slenderness in resisting wave loads under various vertical thrust.

Estimation of Dynamic Motions and Mooring Forces for Floating Type Offshore Platform Based on Hydrodynamic Analysis (동수력학 해석 기반 부유식 해양 플랫폼의 동적 운동 및 계류력 산정)

  • Cha, Ju-Hwan;Moon, Chang-Il;Song, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.48-57
    • /
    • 2012
  • This paper deals with numerical analyses in the context of estimations of hydrodynamic motions and dynamic loads for a floating type offshore platform using some exclusive simulation code such as code for the simulation of a floating type of offshore crane based on multi-body dynamics, along with the commercial code AQWA. Verifications of numerical models are carried out by comparing the RAO results from the simulation code. In the verification analyses, hydrodynamic motions are examined in the frequency domain for the floating type offshore platform according to the mooring lines. Both the hydrodynamic motions and dynamic loads are estimated for floating type offshore platforms equipped with the catenary type and taut mooring lines. A review and comparison are carried out for the numerically estimated results. The structural safety of the connection parts in an offshore structure such as a floating type offshore platform is one of the most important design criteria in view of fatigue life. The dynamic loads in the connecting area between a floating type offshore platform and its mooring lines are estimated in detail according to variations in the mechanical properties of the mooring lines. The dynamic tension load on the mooring lines is also estimated.

Hydrodynamic-Structural Response Coupling Analysis to a Rectangle Floating Structures (장방형 부유구조물에 대한 동유체력-구조응답 특성)

  • Oh, Young-Cheol;Gim, Ok-Sok;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.577-583
    • /
    • 2012
  • Structures floating in the ocean experience various kinds of external loads, among which wave load is considered as determining factor in structural design. Its relative size compared with wavelength may be used to classify whether the structure is relatively small or large. Traditionally, the small structures are assumed to have little diffraction and the wave loads on large structure are usually calculated by only considering inertia force according to diffraction. In this paper, rectangular floating structures usually used in the ocean, river, and lake are used to find the relationship between hydrodynamic forces and its structural response.

Water Quality Management of Kwangyang Bay by Point Pollution Source Control (점원 오염부하 제어에 의한 광양만의 수질관리)

  • Lee Dae-In;Park Chung-Kil;Cho Hyeon-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.28-39
    • /
    • 2001
  • The eco-hydrodynamic model was used to simulation water quality of Kwangyang Bay according to the environmental variation for appropriate water quality management. The mean concentration of COD was 3.3㎎/L, this exceeded the third class of water quality criteria. Waste water discharging loads showed approximately 90% of total pollutant loads. For satisfaction to below 10㎍/L of Chl. a and 2㎎/L of COD, above 35% reduction of present pollutant loads of point sources are needed.

  • PDF

Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines

  • Wang, Baowei;Rahmdel, Sajad;Han, Changwan;Jung, Seungbin;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.267-279
    • /
    • 2014
  • Hydrodynamic analyses of classic and truss spar platforms for floating offshore wind turbines (FOWTs) were performed in the frequency domain, by considering coupling effects of the structure and its mooring system. Based on the Morison equation and Diffraction theory, different wave loads over various frequency ranges and underlying hydrodynamic equations were calculated. Then, Response Amplitude Operators (RAOs) of 6 DOF motions were obtained through the coupled hydrodynamic frequency domain analysis of classic and truss spar-type FOWTs. Truss spar platform had better heave motion performance and less weight than classic spar, while the hydrostatic stability did not show much difference between the two spar platforms.

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.