• 제목/요약/키워드: hydrodynamic diffraction analysis

검색결과 32건 처리시간 0.022초

Performance Analysis of Multiple Wave Energy Converters due to Rotor Spacing

  • Poguluri, Sunny Kumar;Kim, Dongeun;Ko, Haeng Sik;Bae, Yoon Hyeok
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.229-237
    • /
    • 2021
  • A numerical hydrodynamic performance analysis of the pitch-type multibody wave energy converter (WEC) is carried out based on both linear potential flow theory and computational fluid dynamics (CFD) in the unidirectional wave condition. In the present study, Salter's duck (rotor) is chosen for the analysis. The basic concept of the WEC rotor, which nods when the pressure-induced motions are in phase, is that it converts the kinetic and potential energies of the wave into rotational mechanical energy with the proper power-take-off system. This energy is converted to useful electric energy. The analysis is carried out using three WEC rotors. A multibody analysis using linear potential flow theory is performed using WAMIT (three-dimensional diffraction/radiation potential analysis program), and a CFD analysis is performed by placing three WEC rotors in a numerical wave tank. In particular, the spacing between the three rotors is set to 0.8, 1, and 1.2 times the rotor width, and the hydrodynamic interaction between adjacent rotors is checked. Finally, it is confirmed that the dynamic performance of the rotors slightly changes, but the difference due to the spacing is not noticeable. In addition, the CFD analysis shows a lateral flow phenomenon that cannot be confirmed by linear potential theory, and it is confirmed that the CFD analysis is necessary for the motion analysis of the rotor.

손상침수로 자세변화된 바지형 선박의 파랑하중해석 (Waveload Analysis for Heeled Barges with Flooded Compartments)

  • 홍도천;홍사영
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.379-387
    • /
    • 2005
  • A ship may suffer sinkage and heel due to flood in a compartment caused by damage on a deck. The motion and waveloads of the heeled ship floating in waves have been analyzed by making use of a three dimensional potential theory taking account of the hydrodynamic pressure in the flooded compartments. The shear forces and bending moments due to radiation-diffraction waves have been calculated by the direct integration of the 3-d hydrodynamic pressure on the outer and inner hulls of floating barges. The motion responses and the relative flow rate across the mean free surface of the water in the flooded compartments are also presented.

Numerical Study on Floating-Body Motions in Finite Depth

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • 제2권3호
    • /
    • pp.176-184
    • /
    • 2012
  • Installing floating structures in a coastal area requires careful observation of the finite-depth effect. In this paper, a Rankine panel method that includes the finite-depth effect is developed in the time domain. The bottom boundary condition is satisfied by directly distributing Rankine panels on the bottom surface. A stepwise analysis is performed for the radiation diffraction problems and consequently freely-floating motion responses over different water depths. The hydrodynamic properties of two test hulls, a Series 60 and a floating barge, are compared to the results from another computation program for validation purposes. The results for both hulls change remarkably as the water depth becomes shallower. The important features of the results are addressed and the effects of a finite depth are discussed.

비특이화 간접경계적분방정식 방법을 이용한 부유식 구조물의 유체동역학적 거동에 대한 주파수영역 해석 (Frequency Domain Analysis for Hydrodynamic Responses of Floating Structure using Desingularized Indirect Boundary Integral Equation Method)

  • 오승훈;정동호;조석규;남보우;성홍근
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.11-22
    • /
    • 2019
  • In this paper, a Rankine source method is applied and validated to analyze the hydrodynamic response of a three-dimensional floating structure in the frequency domain. The boundary value problems for radiation and diffraction problem are solved by using a desingularized indirect boundary integral equation method (DIBIEM). The DIBIEM is simpler and faster than conventional methods based on the numerical surface integration of Green's function because the singularities of Green's function are located outside of fluid regions. In case of floating structure with complex geometry, it is difficult to desingularize the singularities of Green's function consistently. Therefore a mixed approach is carried out in this study. The mixed approach is partially desingularized except singularities of the body. Wave drift loads are calculated by the middle-field formulation method that is mathematically simple and has fast convergence. In order to validate the accuracy of the developed program, various numerical simulations are carried out and these results are analyzed and compared with previously published calculations and experiments.

Dynamic responses of an FPSO moored on sloped seabed under the action of environmental loads

  • Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • 제8권3호
    • /
    • pp.329-343
    • /
    • 2018
  • The inclination of seabed profile (sloped seabed) is one of the known topographic features which can be observed at different seabed level in the large offshore basin. A mooring system connected between the platform and global seabed is an integral part of the floating structure which tries to keep the floating platform settled in its own position against hostile sea environment. This paper deals with an investigation of the motion responses of an FPSO platform moored on the sloped seabed under the combined action of wave, wind and current loads. A three-dimensional panel discretization method has been used to model the floating body. To introduce the connection of multi-segmented non-linear elastic catenary mooring cables with the sloped seabed, a quasi-static composite catenary model is employed. The model and analysis have been completed by using hydrodynamic diffraction code AQWA. Validation of the numerical model has been successfully carried out with an experimental work published in the latest literature. The analysis procedure in this study has been followed time domain analysis. The study involves an objective oriented investigation on platform motions, in order to identify the effects of the slopped seabed, the action of the wave, wind and current loads and the presence of riser system. In the end, an effective analysis has been performed to identify a stable mooring model in demand of reducing structural responses of the FPSO.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • 제9권4호
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

Structural integrity of a 2.5-MW spar-type floating offshore wind turbine under extreme environmental conditions

  • Hanjong Kim;Jaehoon Lee;Changwan Han;Seonghun Park
    • Wind and Structures
    • /
    • 제37권6호
    • /
    • pp.461-471
    • /
    • 2023
  • The main objective of this study was to establish design guidelines for three key design variables (spar thickness, spar diameter, and total draft) by examining their impact on the stress distribution and resonant frequency of a 2.5-MW spar-type floating offshore wind turbine substructure under extreme marine conditions, such as during Typhoon Bolaven. The current findings revealed that the substructure experienced maximum stress at wave frequencies of either 0.199 Hz or 0.294 Hz, consistent with previously reported experimental findings. These results indicated that the novel simulation method proposed in this study, which simultaneously combines hydrodynamic diffraction analysis, computational dynamics analysis, and structural analysis, was successfully validated. It also demonstrated that our proposed simulation method precisely quantified the stress distribution of the substructure. The novel findings, which reveal that the maximum stress of the substructure increases with an increase in total draft and a decrease in spar thickness and spar diameter, offer valuable insights for optimizing the design of spar-type floating offshore wind turbine substructures operating in various harsh marine environments.

규칙파중 전진하는 선박의 유체역학적 응답에 대한 비정상 수치해석 (Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave)

  • 박일룡;김광수;김진;반석호
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.29-41
    • /
    • 2008
  • The present paper provides a CFD analysis of diffraction problem for a ship with forward speed using an unsteady RANS simulation method, a WAVIS code. The WAVIS viscous solver adopting a finite volume method has second order accuracy in time and field discretizaions for the RANS equations. A two phase level-set method and a realizable ${\kappa}-{\varepsilon}$ turbulence model are adopted to compute the free surface and to meet the turbulence closure, respectively. To validate the capability of the present numerical methods for the simulation of an unsteady progressive regular wave, computations are performed for three grid sets with refinement ratio of ${\sqrt{2}}$. The main simulation is performed for a DTMB5512 model with a forward speed in a regular head sea condition. Validation of the present numerical method is carried out by comparing the present CFD results with available unsteady experimental data published in the 2005 Tokyo CFD Workshop: resistance, heave force, pitch moment, unsteady free surface elevations and velocity fields.

H-형태 양친매성 펜타블록 공중합체의 화학효소적 합성과 자기회합거동 평가 (Chemoenzymatic Synthesis of H-shaped Amphiphilic Pentablock Copolymer and Its Self-assembly Behavior)

  • Chen, Peng;Li, Ya-Peng;Li, Cai-Jin;Meng, Xin-Lei;Zhang, Bao;Zhu, Ming;Liu, Yan-Jing;Wang, Jing-Yuan
    • 폴리머
    • /
    • 제37권3호
    • /
    • pp.332-341
    • /
    • 2013
  • H-shaped amphiphilic pentablock copolymers $(PSt)_2-b-PCL-b-PEO-b-PCL-b-(PSt)_2$ was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (${\varepsilon}$-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.

Morison 방정식을 이용한 Tension Leg Platform의 동정해석 (Dynamic Analysis of a Tension Leg Platform Using Morison's Equation)

  • 편종근;박우선;윤정방
    • 대한토목학회논문집
    • /
    • 제7권3호
    • /
    • pp.223-228
    • /
    • 1987
  • 본 논문에서는 Tension Leg Platform(TLP)에 작용하는 파랑하중을 간단한 Morison 방정식을 이용하여 효율적으로 산정할 수 있는 방법에 대해서 연구하였다. 본 방법에서는 MacCamy-Fuchs 산란파이론에 기초를 둔 파동력 감소계수를 도입하여 파의 산란효과를 근사적으로 고려하였으며, Morison 방정식 상에서는 무시되는 연직기둥의 바닥에 작용하는 수직력을 이 면에서의 동압력과 수직방향의 부가질량에 관련된 관성력으로 산정하여 고려하였다. 수치해석은 1000 ft 수심에 위치한 가상적인 구조물에 $0^{\circ}$$45^{\circ}$로 입사하는 파에 대하여 전술한 방법 및 이론적으로 보다 정확한 산란파이론에 의한 방법을 사용하여 수행하였으며, TLP 운동 및 tether의 상단 인장력의 전달함수(RAO)를 구하여 비교 검토하였다.

  • PDF