• Title/Summary/Keyword: hydrocarbon fire

Search Result 48, Processing Time 0.023 seconds

Analytical Study of Fire Resistance Performance of Plant Facilities using Ansys (Ansys를 활용한 플랜트 시설물 내화성능에 대한 해석적 연구)

  • Doo Chan Choi;Min Hyeok Yang;Su Min Oh;So Jin Yang
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.958-967
    • /
    • 2023
  • Purpose: This study aims to analyze the fire resistance performance applied to plant facilities with high fire risk in Korea, secure suitable fire resistance performance, and ensure the fire safety of plant facilities. Method: Using the finite element analysis program Ansys, thermal transfer analysis and structural analysis were performed with fire load and fireproof coating as variables, and the fire resistance performance of plant facilities was analyzed based on the analysis results. Result: The fireproof coating applied to domestic plant facilities failed to secure fire resistance performance when the fire load of hydrocarbon fire presented in UL 1709 was applied, and it was confirmed that the deformation of steel after the fire was also significant. Conclusion: The current fire resistance performance applied to plant facilities in Korea cannot secure fire resistance performance in sudden fire growth and large fire loads like petrochemical plants, and it is necessary to secure fire safety by evaluating suitable fire resistance performance through performance evaluation of plant facilities.

A Study on Development of Furnance for Road Tunnel Lining Fire Damage Evaluation (도로터널 라이닝 화재손상 평가를 위한 가열로 개발에 관한 연구)

  • Park, Kyung-Hoon;Kim, Heung-Youl;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.479-483
    • /
    • 2008
  • There are no International Standards or Criteria pertaining to fires inside tunnels at the moment, but there are some fire-related regulations in some advanced countries such as Germany and the Netherlands where some fire-related studies have been expedited. Germany has established regulations related to the safety of structures by stipulating Fire Curves of RABT and EBA Tunnels. Also, the Netherlands has established the resistance capacity of structures by stipulating RWS curve so that they can prevent the adjacent area from being damaged due to a tunnel collapse. Hydrocarbon Fire Curve is the standard assessing the behaviour of a structure in a serious fire, by increasing the heating speed and the maximum temperature of ISO 834 Curve, while MHC Fire Curve, which was established in France, realizes more serious fire conditions. In this study, we aimed to develop the basis of full-sized experiments, with which you can assess the fire-resisting capacity against the fire strength of concrete PC panel lining, through the realization of various tunnel fire curves as mentioned above, by developing the heating furnace suitable for the requirements of Fire-Resisting Standards, with which you can assess the fire damage of tunnel concrete lining. We have developed various conditions of the heating furnace and the method to install a thermo couple within the furnace based on EFNARC and KS F2257-1. We have also conducted a calibrating experiment in order to secure its reliability.

  • PDF

Introduction of Fire Protection Technology and Its Design Method of Offshore Facilities (해양플랜트의 방화대책 및 설계기술 소개)

  • Koo, Myeong Jun;Choi, Jae Woong;Yoon, Ho Byung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The dimensioning accidental loads have been selected through suitable quantitative risk assessment and generally utilized important factors for offshore facility design. The fire hazard can be quantified with dimensioning fire loads. The main purposes of fire protection are to maintain the functionality of safety systems within evacuation period and to prevent the escalation from initial fire to uncontrolled catastrophic fire. This paper introduces the applications and the design methods of active and passive fire protections as representative measures of fire protection of offshore facilities. The passive fire protection requires the high initial installation cost and much difficulty on the operation of facilities and their maintenance. The oil major clients have asked the design contractors of offshore facilities to optimize the amount of passive fire protection with relevant engineering technology recently.

Example of Air Exposure Assessment for Fire Extinguishing Agent Residues (소화약제 잔류물질에 대한 공기 중 노출평가 사례)

  • Daesung Lim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.14-17
    • /
    • 2024
  • Objectives: This is a case of air exposure assessment conducted after researchers complained of headaches and odor due to residual substances from fire extinguishing agents spread throughout the laboratory due to a malfunction of the fire extinguishing facility. Methods: A component analysis was conducted on the residual substances of a fire extinguishing agent spread in a laboratory using Py-GC-MS (pyrolysis gas chromatography mass spectrometry) at the research institute's own central equipment research center. As a result of the component analysis, several types of substances were detected. Among these, five types of substances subject to work environment measurement in the aromatic hydrocarbon series, which can affect headaches and odor, were selected as substances subject to exposure assessment in the air, and the measurement and analysis methods of the target substances were conducted in accordance with the KOSHA Guide for each substance. Conclusions: The measurement results showed that all 5 types of substances were not detected at locations A, B, and C. This is believed to be the result of the residual substances in the fire extinguishing agent being measured when approximately two months had elapsed after being exposed to the test bench, and the substances already exposed had volatilized and disappeared. In this survey, it is believed that the measurement process is more important than the measurement results.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (고온화재조건 콘크리트 라이닝의 하중비에 따른 폭렬영향성 및 화재손상특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Ahn, Chan-Sol;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • The fire in tunnel, when failed to extinguish at early stage, tends to easily develop to high temperature and spread to entire area of the tunnel because of considerable level of fire load and smoke control facility within the tunnel, resulting in severe damage to the people and tunnel structure. This study was intended to carry out the fire test with MHC fire curve, a scenario, which has the most rapid fire rise, on assumption of load ratio of 1, 20, 40, 60 and 70%, so as to identify the thermal characteristics of the concrete against spalling and the range of fire damage. The specimen was small scale sample as defined by EFNARC and the mixing ratio was based on 24 MPa, which is considered to be the normal strength. As a result of test, 16mm spalling was occurred on the lining under the non-load condition, while no spalling was occurred with 20% and 40% of load ratio. In case of 60% of load ratio, 24 mm of spalling was occurred and it failed in 10 minutes after heating in case of 70% load condition.

An experimental study on the fireproof performance of fire damper according to change of the insulation conditions on the exposed side and unexposed side of the coaming (코밍 노출면 방열 두께 및 비 노출면 방열 길이 변화에 따른 방화 댐퍼의 내화성능에 관한 실험적 연구)

  • Choi, Tai-Jin;Kim, Joung-Sik;Lim, Young-Soo;Lee, Kyung-Hyun;Kang, Ho-Keun;Park, Sung-Ho;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-104
    • /
    • 2014
  • In this paper, Fire resistance test was carried out in accordance with the change of the insulation conditions on the exposed side and unexposed side of the coaming to obtain optimal insulation conditions for class H-120 insulation in connection with specimen-1 of the preceding paper for the evaluation of fireproof performance for fire dampers according to hydrocarbon fire conditions. As a test result, specimen-2(88 mm, $171^{\circ}C$) was satisfied class H-120 insulation, but specimen-3(76 mm, $181^{\circ}C$) was exceeded thermal insulation acceptance criteria at 110 minutes, therefor, specimen-2(88 mm) is optimal insulation conditions as possible lightweight than specimen-1. Test result comparison, we concluded that temperature rising of the coaming insulation surface was influenced by conductive heat from the bulkhead, and coaming surface was influenced by radiant heat from blade & coaming.

Applied Time-Temperature Curve for Safety Evaluation in the Road Tunnel by Fire (도로터널내 화재에 따른 터널구조체의 안정성 평가를 위한 시간-온도곡선의 적용)

  • Won, Jong-Pil;Choi, Min-Jung;Jang, Chang-Il;Lee, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.551-555
    • /
    • 2009
  • This study is performed to apply a standard to evaluate fire protection assessment for tunnel structures when a fire breaks out in the road tunnel. Recently, a number of road tunnels have been rapidly increased and fire risk also multiplyed according to extend tunnel length, due to natural features and environmentally-friendly road construction in Korea. But we have not yet been prescribed appropriate time-temperature curve for tunnel fire. Therefore, we presented fire design model and investigated time-temperature curve proposed by a foreign country considering traffic, a kinds of vehicles which are a basis of heat rate. At the end, Hydrocarbon modified curve applied as design fire model by using numerical analysis and presented design fire model and examined the effects of tunnel structures.

Growth Characteristics and Hydrocarbon Patterns of Flammable Liquid on a Vinyl Layer (비닐장판 위에서 연소된 인화성 액체의 성장 특성과 탄화 패턴)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the growth characteristics and carbonization pattern when a fire occurs due to a flammable liquid sprinkled on a vinyl floor. When acetone was sprinkled on a floor, the flame reached its peak in approximately 0.2 s after it was ignited. The lower part of the flame showed a laminar pattern while the upper part showed a turbulent pattern. The pattern showed a turbulent pattern and generated white smoke. The combustion completed floor surface showed carbonization of a dim pore pattern. In the case of benzene, an intense flame was formed in approximately 0.6 s after ignition. The flame length was measured to be approximately 50 mm. When the flame became weak, a significant amount of black smoke was generated due to incomplete combustion. The combustion completed floor surface showed carbonization of a pour pattern and splash pattern. In the case of alcohol, an intense flame was formed in approximately 1.1 s after ignition. In addition, the depth of carbonization was significant where the flammable liquid was collected and a trace of carbonization was observed at the boundary of the flow path of the flammable liquid.

Standard Proposed for Fire Safety Evaluation of Railway Tunnels and Evaluation of Fire Temperature (철도터널내 화재시 내화성능 평가를 위한 기준 제안 및 화재 온도 평가)

  • Won, Jong-Pil;Choi, Min-Jung;Lee, Su-Jin;Lee, Sang-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.196-200
    • /
    • 2010
  • The number of railway tunnels has been increasing rapidly. Although fires in long railway tunnels are rare, the consequences can be devastating. Prior to this study, there were no adequate time-temperature curves for the fire safety assessment of Korean railway tunnels. We studied a standard foreign time-temperature curve for which the heat rate is based on the traffic and the types of vehicles. We then proposed a hydrocarbon curve as a fire design model for railway tunnels in Korea. We examined the implications of this proposed model on railway tunnel structures using numerical analysis.

The Measurement of Flash Point for Binary Mixtures of 2,2,4-Trimethylpentane, Methylcyclohexane, Ethylbenzene and p-xylene at 101.3 kPa

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.279-285
    • /
    • 2020
  • Laboratories and industrial processes typically involve the use of flammable substances. An important property used to estimate fire and explosion risk for a flammable liquid is the flash point. In this study, flash point data at 101.3 kPa were determined using a SETA closed cup flash point tester on the following solvent mixtures: {2,2,4-trimethylpentane + methylcyclohexane}, {2,2,4-trimethylpentane + ethylbenzene}, and {2,2,4-trimethylpentane + p-xylene}. The purpose of this work is to obtain flash point data for binary mixtures of 2,2,4-trimethylpentane with three hydrocarbons (methylcyclohexane, ethylbenzene, and p-xylene), which are representative compounds of the main aromatic hydrocarbon fractions of petroleum. The measured flash points are compared with the predicted values calculated using the GE models' activity coefficient patterns: the Wilson, the Non-Random Two-Liquid (NRTL), and the UNIversal QUAsiChemical (UNIQUAC) models. The non-ideality of the mixture is also considered. The average absolute deviation between the predicted and measured lower flash point s is less than 1.99 K, except when Raoult's law is calculated. In addition, the minimum flash point behavior is not observed in any of the three binary systems. This work's predicted results can be applied to design safe petrochemical processes, such as identifying safe storage conditions for non-ideal solutions containing volatile components.