• Title/Summary/Keyword: hydraulic shock

Search Result 86, Processing Time 0.025 seconds

An Experimental Study on the Cushion Characteristics of Hydraulic Cylinder (유압 실린더의 쿠션특성에 관한 실험적 연구)

  • Lee, Sang-Gi;Kim, Dong-Su;Kim, Hyeong-Ui
    • 기계와재료
    • /
    • v.11 no.2 s.40
    • /
    • pp.53-61
    • /
    • 1999
  • The paper describes a characteristics analysis for cushion pressure and cushion stroke time at hydraulic cushioning cylinder. In hydraulic cushioning cylinder, an inertia exaggerates a kinetic energy at a reciprocation that collide with an end of stroke and generate a destructive shock, noise and vibration within the structural and operating member of machine of equipment. In order to reduce which cause to undesirable noise, vibration and fatigue in hydraulic control system, it is indispensible measure a cushion parameters at cushion region of hydraulic cushioning cylinder. A cushioning device is applied to absorb high impact energy and to decelerate a fast travelling object, too. At an experimental results, it turns out that cushion pressure is mainly a function of the external load and cylinder input flowrate rather than the supply pressure.

  • PDF

Motion Characteristics of Hydraulic Actuator with Various Cushion Shapes (쿠션 형상 변화에 따른 유압 액추에이터 작동 특성 연구)

  • Kim, Jin-Hyoung;Kang, Hyun-Su;Han, Su-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.48-53
    • /
    • 2015
  • Hydraulic actuator is a primary component of the hydraulic valve systems. This paper describes a motion characteristic of hydraulic actuator with various configurations of cushion. It plays an important role in protecting the actuator from the shock when the piston reaches the end position. Numerical analyses were conducted by using commercial code, ANSYS with k-${\varepsilon}$ turbulent model. The results for pressure and velocity distributions in the hydraulic actuator with different cushion shapes were graphically depicted.

Optimal Design of Two-Dimensional Cascade with Shock-Free Inflow Criterion

  • Muis, Abdul;Sutikno, Priyono;Soewono, Aryadi;Hartono, Firman
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.362-369
    • /
    • 2016
  • The shock-free inflow criterion applied in the development of two-dimensional cascade for turbomachinery design. The developed cascade analysis with potential flow calculation through a panel method has been used to determine the shock-free inflow condition. The combination between cascade analysis and PSO (particle swarm optimization) algorithm provides an opportunity to develop a diagram of a two-dimensional parameter cascade at various airfoil shapes. Analytical equations have been derived from the diagram that will facilitate the turbomachinery designer in applying the shock-free inflow criterion on their developed cascade. This method has been used to develop the very low head axial hydraulic turbine and provides excellent results of numerical and actual prototype performances.

Particle Detachment in Granular Media Filtration (입상여과에서 입자물질의 탈리)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.673-679
    • /
    • 2004
  • Particle breakthrough can occur by either the breakoff of previously captured particles (or flocs) or the direct passage of some influent particles through the filter. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5, nearly pure $SiO_2$) and three different destabilization methods (pH control, alum and polymer destabilization) were utilized. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. To assess the possibility of particle detachment during the normal filtration, a hydraulic shock load (20% increase of flow rate) was applied after 4 hours of normal filtration. The magnitude of particle detachment was proportional to the particle size for non-Brownian particles. At the same time, less favorable particles, i.e., particles with larger surface charge, were easily detached during the hydraulic shock load. Therefore, proper particle destabilization before filtration is crucial for maximum particle removal as well as minimum particle breakthrough.

A Study on the Optimization Design of Automotive Damper Using Genetic Algorithm (유전알고리즘을 이용한 차량용 댐퍼의 최적설계에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.80-86
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of car body. It converts the kinetic energy of the shock into another form of energy, typically heat. The main mechanism for providing damping is by shearing the hydraulic fluid as it flows through restrictions. Since the damping mechanism depends on the flow restrictions, these restrictions are very important in damper design. Damper engineers often try several combinations of valve shims, piston orifices and bleed orifices before finding the best combination for a particular setup on a car. Therefore, the ability to tune a damper properly without testing is of great interest in damper design. For this reason, many previous researches have been done on modeling and simulation of the damper. This paper explains a genetic algorithm method to find the optimal parameters for the design objective and the simulation results agree well with the targeted damping characteristics.

Levee Breach Flow by Experiment and Numerical Simulation (수리실험 및 수치모의를 이용한 제방붕괴 흐름해석)

  • Kim, Joo-Young;Lee, Jong-Kyu;Lee, Jin-Woo;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.461-470
    • /
    • 2011
  • Abrupt and gradual levee breach analyses on the flat domain were implemented by laboratory experiments and numerical simulations. To avoid the reflective wave from the side wall the experiment was performed in a large domain surrounded by waterway. A numerical model was developed for solving the two-dimensional gradual levee breach flow. The results of the numerical simulation developed in this study showed good agreement with those of the experimental data. However, even if the numerical schemes effectively replicated the trends of the observed water depth for the first shock, there were little differences for the second shock. In addition, even though the model considered the Smagorinsky horizontal eddy viscosity, the location and height of the hydraulic jump in the numerical simulation were not fairly well agree with experimental measurements. This shows the shallow water equation solver has a limitation which does not exactly reproduce the energy dissipation from the hydraulic jump. Further study might be required, considering the energy dissipation due to the hydraulic jump or transition flow from reflective wave.

A Study on the Associated Response Lag in Shock Control of Hydraulic System Using Fluid Device (유체기구를 이용한 유압계통의 충격치제어에 수탄되는 반응지연에 관한 연구)

  • Lee, Joo-Seong;Lee, Kye-Bock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1488-1495
    • /
    • 2002
  • The response time represents how fast a system responds to a given disturbance at the system boundary. Flow restricting devices for controlling transients can result in a decrease in the peakm pressure, but may change response time. Response lag in a hydraulic system leads to inefficient working cycle and operator discomfort. The experiments were conducted in order to get information on the parameters which exert appreciable influence on the response time. The experimental apparatu including a hydraulic actuator, orifice and a hydraulic pump was an idealization of a bucket hydraulic shifting system. Experimental results show that the response time depends on operating pressure and flow rate. The effects of orifice type and size on the response time are quantified.

A Basic Study on the Alternative Development of Piston for Shock Absorber (충격 흡수기 피스톤의 대체 개발에 관한 기초적 연구)

  • 김영호;배원명;임동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.121-124
    • /
    • 1995
  • This study is aimed at cutting down the cost, weight and improving process by replacing the traditional sintered piston of the shock absorber with engineering plastic piston by means of injection molding. To obtain the high mechanical properties, glass fiber material was selected adequately and forming analysis considering fiber orientation was made to remove the forming deficit fators and to construct the optimal runner system. In addition, structural analysis using commercial software MOLDFLOW was performed under near conditions in actual driving of automotive. The results from the internal pressure process test, oilproof test based on forming, structural and strength analysis shows that hydraulic close performance and damping force considering the out of roundness of shock absorber are relatively good.

  • PDF

Comparative study on response of thiocyanate shock load on continuous and fed batch anaerobic-anoxic-aerobic sequential moving bed reactors

  • Sahariah, B.P.;Chakraborty, S.
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • A comparative study on response of a toxic compound thiocyanate ($SCN^-$) was carried out in continuous and fed batch moving bed reactor systems. Both systems had three sequential anaerobic, anoxic and aerobic reactors and operated at same hydraulic retention time. Feed $SCN^-$ was first increased from 600 mg/L to 1,000 mg/L for 3 days (shock 1) and then from 600 to 1,200 mg/L for 3 days (shock 2). In anaerobic continuous reactor, increase of effluent COD (chemical oxygen demand) due to shock load was only 2%, whereas in fed batch reactor it was 14%. In anoxic fed batch reactor recovery was partial in terms of $SCN^-$, phenol, COD and $NO{_3}{^-}$-N and $NO{_2}{^-}$-N removals and in continuous reactor complete recovery was possible. In both systems, inhibition was more significant on aerobic reactors than anaerobic and anoxic reactors. In aerobic reactors ammonia removal efficiency deteriorated and damage was irreversible. Present study showed that fed batch reactors showed higher substrate removal efficiency than continuous reactors during regular operation, but are more susceptible to toxic feed shock load and in nitrifying reactor damage was irreversible.

The Effects of Design Parameter Uncertainty of the Shock Absorber on the Performance of Suspension System (충격 흡수기의 설계 파라미터 불확실성이 현가 장치 성능에 미치는 영향)

  • Lee, Choon-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.949-958
    • /
    • 2020
  • The functions of shock absorbers are to dampen body, suspend motions, dissipate impact energy, and control tire force variation. During the operation, hydraulic oil is passed between the chambers via a flow restrictions. Therefore the damping force characteristics of shock absorber is determined by the characteristics of orifices and flow restrictions. The uncertainty in design variable affects the performance of suspension system strongly. But, the researches about the influence of uncertainty in design variable such as a fluid restriction's property of shock absorber, on the suspension system performance was hardly ever proposed. In this paper, we used statistical method of Latin Hypercube sampling, and the effects of design variables uncertainty on the performance of suspension system was presented.