• Title/Summary/Keyword: hydraulic pressure tunnel

Search Result 82, Processing Time 0.024 seconds

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.

Prediction of Geological Condition Ahead of Tunnel Face Using Hydraulic Drilling Data (유압 천공데이터를 이용한 터널 굴진면 전방 지질상태 예측)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Kim, Kwang-Sik;Yim, Sung-Bin;Seo, Kyoung-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.483-492
    • /
    • 2009
  • During construction of a tunnel and underground structure, it is very important to acquire accurate information of the rock mass will be excavated. In this study, the drill monitoring method was applied for rapid prediction of geological condition ahead of the tunnel face. Mechanical data(speed, torque and feed pressure) from drilling process using a hydraulic drilling machine were analyzed to assess rock mass characteristics. Rock mass information acquired during excavation from drilling monitoring were compared with results from horizontal boring and tunnel seismic profiling(TSP). As the result, the drilling monitoring method is useful to assess rock mass condition such as geological structures and physical properties ahead of the tunnel face.

Numerical Approach for Determination of Shut-in Pressure in Hydrofracturing Test (수압파쇄 균열폐쇄압력 산정을 위한 수치해석 연구)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • The shut-in pressure calculated in common hydrofracturing test for vertical borehole equals generally to the minimum horizontal principal stress, so it should be considered as an essential parameter for determining the in-situ stress regime around the rock mass. It shows usually an ambiguous value in pressure-time history curves, however, because of the relationship between the behavior of hydraulic fractures and the condition of remote stress regime. In this study, a series of numerical analyses have been carried out to compare several methods for determining the shut-in pressure during hydrofracturing. The hydraulic-mechanical coupling has been applied to numerical analysis for simulating the fracture propagation by hydraulic pressure, and the different discontinuity geometry has been considered in numerical models to examine the effect of numerical element shape on fracture propagation pattern. From the numerical simulations with the four different discontinuity geometries, it was revealed that the shut-in pressure obtained from graphical methods rather than statistical method was relatively small. Consequently a care should be taken in selecting a method for determining the shut-in pressure when a stress anomaly around borehole and a fracture propagation with complicate mechanism are considered.

An Experimental Study of Pressure Variation in Pipe Flow according to Residual Air Condition (잔류공기조건에 따른 관 내 유동의 압력변화에 관한 실험적 연구)

  • Park, Jaegon;Lee, Kyungsu;Ko, Joo Suk;Lyu, Siwan
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.113-119
    • /
    • 2022
  • Sudden intrusion of a large amount of surface water into a flood defensive tunnel or pipeline system can compress the residual air. The compressed air may explode along with water through the inlet or air vent, resulting in hydraulic capacity degradation or safety hazards. This study aims to investigate the behavior of compressed air body in pipelines according to the residual air condition with a series of laboratory experiments measuring pressure variation. It has been found that flow characteristics and residual air conditions have a dominant influence on the magnitude and periodicity of the pressure variation. A proper measure to effectively control the residual air is required for securing the design capacity of flood defensive pipeline systems, since the peak pressure is predominantly affected by residual air conditions.

Influence of the Cleavage Anisotropy of Pocheon Granite on Hydraulic Fracturing Behaviour (포천 화강암의 결 이방성이 수압파쇄거동에 미치는 영향)

  • Jung, Sung-Gyu;Zhuang, Li;Yeom, Sun;Kim, Kwang-Yeom;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.327-337
    • /
    • 2016
  • In this study, laboratory hydraulic fracturing tests are carried out to evaluate the effects of the cleavage anisotropy of Pocheon granite. Breakdown pressure is smaller when cracks are generated to the direction of rift plane in constant pressurization rate condition because of higher microcracks density. Besides not only injection rate changes but also the amount of injection pressure for fracture initiation and crack expansion is detected while testing due to internal deformation. Pressurization rate is higher while hydraulic fracture testing with constant injection rate condition in case of the specimen which has rift plane perpendicular to borehole because there are much flow paths to penetrate compared to the specimen which has hardway plane perpendicular to borehole. Observation by X-ray CT scanning shows that almost all of cracks due to hydraulic fracturing are generated to the direction of plane which has higher microcrack density that is rift plane or grain plane.

A Case Study on Buckling Incidents of Steel Liner under External Water Pressure (외수압에 의한 강관 라이닝 좌굴 사례 연구)

  • Chung, Kyujung;Chung, Kyungmun;Shin, Hyohee;Kim, Daeho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.13-20
    • /
    • 2011
  • The main objective of this paper is finding the influence factors and their degree of importance to steel liner's safety by investigating and evaluating the buckling incidents of steel tunnel liner under external water pressure. The study was based on the detailed investigation to the design conditions and incident shapes at 2m diameter waterway tunnel with a partially buckled internal steel liner and concrete backfilled lining as the raw water transmission pipe line of regional water supply project. Appropriate buckling theory capable of applying this incident points was selected by referring the existing literature and compared with the results of investigation. Also, hydrogeological characteristics of this site on buckling pressure was evaluated. The result of this study was shown that both the hydrogeological characteristics of upper geologic layers and proper tunnel construction are important factors on buckling at steel liner, and hydraulic gradient level should be decided according to the hydrogeological characteristics. This incident case analysis on steel liner of pressurized waterway tunnel was expected to provide more information for realizing the problems and improvements at each design, construction and maintenance stages.

Study on the Seepage Forces Acting on the Tunnel Face with the Consideration of Tunnel Advance Rate (터널 굴진율을 고려한 막장에서의 침투력에 관한 연구)

  • 남석우;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.221-228
    • /
    • 2002
  • The stability of a tunnel face is one of the most important factors in tunnel excavation. Especially, if a tunnel is located under groundwater level, groundwater may flow into the tunnel face and seepage forces acting on the tunnel face due to groundwater flow may affect seriously the stability of the tunnel face. Therefore, the seepage pressure at the tunnel face should be considered fir the proper design and safe construction of a tunnel. In this paper, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was made. From this study, it was concluded that the tunnel advance rate must betaken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology fer the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for undetwater tunnels.

Experimental Study on Fracture Pressure, Permeability Enhancement and Fracture Propagation using Different Fracture Fluids (다양한 파쇄 유체별 파쇄압력, 투과도 증진 및 균열전파에 관한 실험적 연구)

  • Choi, JunHyung;Lee, Hyun Suk;Kim, Do Young;Nam, Jung Hun;Lee, Dae Sung
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.41-51
    • /
    • 2021
  • The hydraulic fracturing developed to improve permeability of tight reservoir is one of key stimulation technologies for developing unconventional resources such as shale gas and deep geothermal energy. The experimental study was conducted to improve disadvantage of hydraulic fracturing which has simple fracture pattern and poor fracturing efficiency. The fracturing experiments was conducted for tight rock using various fracturing fluids, water, N2, and CO2 and the created fracture pattern and fracturing efficiency was analyzed depending on fracturing fluids. The borehole pressure increased rapidly and then made fractures for hydraulic fracturing with constant injection rate, however, gas fracturing shows slowly increased pressure and less fracture pressure. The 3D tomography technic was used to generate images of induced fracture using hydraulic and gas fracturing. The stimulated reservoir volume (SRV) was estimated increment of 5.71% (water), 12.72% (N2), and 43.82% (CO2) respectively compared to initial pore volume. In addition, permeability measurement was carried out before and after fracturing experiments and the enhanced permeability by gas fracturing showed higher than hydraulic fracturing. The fracture conductivity was measured by increasing confining stress to consider newly creating fracture and closing induced fracture right after fracturing. When the confining stress was increased from 2MPa to 10MPa, the initial permeability was decreased by 89% (N2) and 50% (CO2) respectively. This study shows that the gas fracturing makes more permeability enhancement and less reduction of induced fracture conductivity than hydraulic fracturing.

Significance of Ground Water Movements in the Numerical Modelling of Tunnelling (터널해석에 있어 지하수 거동의 중요성)

  • 신종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF