• Title/Summary/Keyword: hydraulic pressure

Search Result 1,898, Processing Time 0.03 seconds

Performance evaluation of rotating roller type raw anchovy sorting machine (회전롤러식 생멸치 선별기계 성능평가)

  • Ok-sam KIM;Seok-bong JEONG;Doo-jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • In the anchovy boat seine fishing boat, it is necessary to select other aquatic organisms other than live anchovies, which are the target species of catch. By making a rotating roller sorter using hydraulic pressure, the anchovy sorting amount was compared and the sorting accuracy of the rotary roller sorter, and the discharge speed of butter fish and jerry fish according to the number of roller revolutions were analyzed. The rotating roller sorter increases the weight of the sorted raw anchovy by 54%, 74% and 91.5% compared to the round bar fixed type, so it can reduce the required time by an average of 73.2%. As a result of converting the sorting accuracy to the weight of pure anchovies excluding the catch weight, the round bar fixed type was 89%; however, the average of the rotating roller sorter was 97.7%. Thus, the sorting accuracy of the rotary roller sorter was further improved by about 8.7%. The roller speed moved 7% at 300 rpm, 7.5% at 600 rpm, and 16% at 900 rpm, so butter fish were discharged overboard 10% faster than jelly fish on average. In addition, the average feed speed of butter fish and jelly fish is 1,400 mm/s when the roller rotation speed is 300 rpm, 1,480 mm/s at 600 rpm, and 1,850 mm/s at 900 rpm. A Φ58 mm roller rotates once it moved about 1.23 mm. In the future, a follow-up study of quantitative evaluation is needed targeting more non-target fish species of anchovy boat seine.

A Study on the Acquisition Technique of Water Retention Characteristics Based on the Evaporation Method and the Chilled Mirror Method for Unsaturated Soils (증발법과 냉각거울법에 의한 불포화토의 함수특성 획득기법 연구)

  • Oh, Seboong;Yoo, Younggeun;Park, Gyusoon;Kim, Seongjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • In order to acquire hydraulic characteristics for unsaturated layers, water retention tests were performed and compared by using the evaporation method, volumetric pressure plate extractor (VPPE) and chilled-mirror dew point method. The evaporation and chilled-mirror method are currently developed experimental technology and measure the water retention curve of unsaturated soils quickly and accurately. In the evaporation and VPPE method, the water retention has been measured and compared until 100kPa matric suction and consequently the result of the evaporation method could be verified. In the chilled-mirror method, the water retention has been measured until high level of matric suction and the overall shape of water retention curves could be obtained. As a result of water retention tests, the representative water retention curves were obtained and the applicability of each test method was discussed. Using both the evaporation and chilled-mirror methods, the soil water retention curve can be acquired reasonably for the whole range of matric suction.

Study on three-dimensional numerical simulation of shell and tube heat exchanger of the surface ship under marine conditions

  • Yi Liao;Qi Cai;Shaopeng He;Mingjun Wang;Hongguang Xiao;Zili Gong;Cong Wang;Zhen Jia;Tangtao Feng;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1233-1243
    • /
    • 2023
  • Shell-and-tube heat exchanger (STHX) is widely used by virtue of its simple structure and high reliability, especially in a space-constrained surface ship. For the STHX of the surface ship, roll, pitch and other motion of the ship will affect the heat transfer performance, resistance characteristics and structural strength of the heat exchanger. Therefore, it is urgent to carry out numerical simulation research on three-dimensional thermal hydraulic characteristics of surface ship STHX under the marine conditions. In this paper, the numerical simulation of marine shell and tube heat exchanger of surface ship was carried out using the porous media model. Firstly, the mathematical physical model and numerical method are validated based on the experimental data of a marine engine cooling water shell and tube heat exchanger. The simulation results are in good agreement with the experimental results. The prediction errors of pressure drop and heat transfer are less than 10% and 1% respectively. The effect of marine conditions on the heat transfer characteristics of the heat exchanger is investigated by introducing the additional force model of marine condition to evaluate the effect of different motion parameters on the heat transfer performance of the heat exchanger. This study could provide a reference for the optimization of marine heat exchanger design.

A Case Study of Rainfall-Induced Slope Failures on the Effect of Unsaturated Soil Characteristics (불포화 지반특성 영향에 대한 강우시 사면붕괴의 사례 연구)

  • Oh, Seboong;Mun, Jong-Ho;Kim, Tae-Kyung;Kim, Yun Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.167-178
    • /
    • 2008
  • Rainfall-induced slope failures were simulated by seepage and stability analyses for actual slopes of weathered soils. After undisturbed sampling and testing on a specimen of unsaturated conditions, a seepage analysis was performed under actual rainfall and it was found that the pore water pressure increased at the boundary of soil and rock layers. The safety factor of slope stability decreased below 1.0 and the failure of actual slope could be simulated. Under design rainfall intensity, the seepage analysis could not include the effects of the antecedent rainfall and the rainfall duration. Due to these limitations, the safety factor of slope stability resulted in above 1.0, since the hydraulic head of soil layers had not be affected significantly. In the analysis of another slope failure, the parameters of unsaturated conditions were evaluated using artificial neural network (ANN). In the analysis of seepage, the boundary of soil and rock was saturated sufficiently and then the safety factor could be calculated below 1.0. It was found that the failure of actual slope can be simulated by ANN-based estimation.

Climate change impact on seawater intrusion in the coastal region of Benin

  • Agossou, Amos;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.157-157
    • /
    • 2022
  • Recent decades have seen all over the world increasing drought in some regions and increasing flood in others. Climate change has been alarming in many regions resulting in degradation and diminution of available freshwater. The effect of global warming and overpopulation associated with increasing irrigated farming and valuable agricultural lands could be particularly disastrous for coastal areas like the one of Benin. The coastal region of Benin is under a heavy demographic pressure and was in the last decades the object of important urban developments. The present study aims to roughly study the general effect of climate change (Sea Level Rise: SLR) and groundwater pumping on Seawater intrusion (SWI) in Benin's coastal region. To reach the main goal of our study, the region aquifer system was built in numerical model using SEAWAT engine from Visual MODFLOW. The model is built and calibrated from 2016 to 2020 in SEAWAT, and using WinPEST the model parameters were optimized for a better performance. The optimized parameters are used for seawater intrusion intensity evaluation in the coastal region of Benin The simulation of the hydraulic head in the calibration period, showed groundwater head drawdown across the area with an average of 1.92m which is observed on the field by groundwater level depletion in hand dug wells mainly in the south of the study area. SWI area increased with a difference of 2.59km2 between the start and end time of the modeling period. By considering SLR due to global warming, the model was stimulated to predict SWI area in 2050. IPCC scenario IS92a simulated SLR in the coastal region of Benin and the average rise is estimated at 20cm by 2050. Using the average rise, the model is run for SWI area estimation in 2050. SWI area in 2050 increased by an average of 10.34% (21.04 km2); this is expected to keep increasing as population grows and SLR.

  • PDF

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF

Design and Experimental Verification of Uni-Injector Using Gas Methane and Lox as Propellants (가스메탄/액체산소를 추진제로 하는 단일 인젝터 설계 및 실험적 검증)

  • Jeon, Jun Su;Min, Ji Hong;Jang, Ji Hun;Ko, Young Sung;Kim, Sun Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.275-283
    • /
    • 2013
  • An injector that uses methane gas ($CH_4$) and liquid oxygen ($LO_x$) as propellants was designed to verify the combustion characteristics of an engine that uses methane, which is one of the next-generation propellants. A swirl/shear coaxial-type injector was used, and flow analysis was performed using Fluent to determine the main design parameters of the injector. A hydraulic test was performed to understand the atomization and spray pattern characteristics of the injector. Next, a combustion test was performed at the design point to understand the ignition and combustion stability. Additional combustion tests were performed according to the O/F ratio to investigate the combustion characteristics and stabilities using the characteristic exhaust velocity ($C^*$) and fluctuation of the chamber pressure. The experimental results showed that the combustion efficiency was greater than 90%, and the pressure fluctuation was lower than 2% under all conditions.

Numerical Analysis on Self-Burial Mechanism of Submarine Pipeline with Spoiler under Steady Flow (정상흐름 하에서 스포일러 부착형 해저파이프라인의 자가매설 기구에 관한 수치해석)

  • Lee, Woo Dong;Hur, Dong Soo;Kim, Han Sol;Jo, Hyo Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.146-159
    • /
    • 2016
  • This study used Navier-Stokes Solver(LES-WASS-2D) for analyzing hydrodynamic characteristics with high order in order to analyze self-burial mechanism of pipeline with spoiler under steady flow. For the validity and effectiveness of numerical model used, it was compared and analyzed with the experiment to show flow characteristics around the pipeline with and without the spoiler. And the hydraulic(flow, vortex, and pressure) and force characteristics were numerically analyzed around the pipeline according to the incident velocity, and shape and arrangement of spoiler. Primarily, if the spoiler is attached to the pipeline, the projected area is increased resulting in higher flow velocity toward the back and strong vortex caused by wake stream in the back. Secondly, the spoiler causes vertically asymmetric flow and vorticity fields and thus asymmetric pressure field. It increases the asymmetry of force on the pipe and thus develops large downward fluid force. Both of them are the causes of selfburying of the pipeline with spoiler.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Experiments of Micro Jet Injection for Bio-Medical Application (바이오 분야 적용을 위한 마이크로 젯 인젝션 실험)

  • Ham, Young-Bog;An, Byeung-Cheol;Trimzi, Mojiz Abbas;Kim, Jong-Dae;Lee, Gi-Tae;park, Jung-Ho;Yun, So-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.681-687
    • /
    • 2016
  • It is essential for micro jet injectors in the biomedical sector to operate under high pressure. High pressure injection, however, is accompanied by high volumes. On/Off valves that can be operated at high speeds have been used to address this problem. In this research, piezoelectric actuators which have a response frequency of the order of hundreds of kilohertz were used as the On/Off valve and experiments were applied. Researchers developed a controller to precisely manipulate the piezoelectric valve with various waveforms. They also fabricated five types of nozzles to consider the effect of nozzle type on injection. This allowed researchers to manipulate and confirm factors that can affect the injection volume and force. Results of this experiment have shown how to decrease the injection volume and increase the injection force. and it is predicted that the optimized injection volume and force value can be determined depending on the skin type.