• Title/Summary/Keyword: hydraulic parameter

Search Result 432, Processing Time 0.029 seconds

Compliance Control of a 3-Link Electro-Hydraulic Manipulator (3축 전기유압 매니퓰레이터의 컴플라이언스 제어)

  • 안경관;표성만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.101-108
    • /
    • 2004
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to obtain stable control performance. In this report, we applied disturbance estimation and compensation type robust control to all axes in a 3-link electro-hydraulic manipulator. From the results of experiment, it was confirmed that the performance of trajectory tracking and attitude regulating is greatly improved by the disturbance observer, which model is the same for each axis. On the other hand, for the autonomous assembly tasks, it is said that compliance control is one of the most available methods. Therefore we proposed compliance control which is based on the position control by disturbance observer for our manipulator system. To realize more stable contact work, the states in the compliance loop are feedback, where not only displacement but also velocity and acceleration are considered. And we applied this compliance control to Peg-in-Hole insertion task and analyzed mechanical relation between peg and hole. Also we proposed new method of shifting the position of end-effector periodically for the purpose of smooth insertion. As a result of using this method, it is experimentally confirmed that Peg-in-Hole insertion task with a clearance of 0.05[mm]can be achieved.

Force Control of one pair of 6-Link Electro-Hydraulic Manipulators (한 쌍의 6축 전기유압 매니퓰레이터의 힘제어)

  • 안경관;조용래;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.353-356
    • /
    • 1997
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and this parameter fluctuations are greater than those of electrically driven manipulator. So this is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field task such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to there real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observe for position control. The difference between force and position disturbance observer is that the input and output of disturbance observer are forces in the case force disturbance observer and the plant varies much compared to the case of position control. In the design of force disturbance observer, generalized plant is derived and the stabilized filter is designed by H infinity control theory to ensure the robuts t stability even though the stiffness of environment changes from sponge to steel, and the contact surface also changes from flat to round shape. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

  • PDF

Force Control of One Pair of 6-Link Electro-Hydraulic Manipulators (Application to the Approaching of a Bolt and the Wrenching of a Nut Tasks) (한쌍의 6축 전기유압 매니퓰레이터를 이용한 힘 제어 (너트의 장착 및 체결 작업에의 응용))

  • Ahn, Kyung-Kwan;Yang, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the automatic assembly tasks using hydraulic manipulators. In this manuscript, we applied a compliance control, which is based on the position control by a disturbance observer for our manipulator system. A reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and the position of the environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions. The proposed force control algorithm is applied to the approaching of bolt and the wrenching of nut tasks as one typical task in the maintenance work of live power electric line and is experimentally confirmed very effective for the task.

Compliance Control of a 6-tink Electro-Hydraulic Manipulator (6축 전기 유압 매니퓰레이터의 컴플라이언스 제어)

  • 안경관;표성만
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is quite difficult to obtain stable control performance. We have applied a disturbance estimation and compensation type robust control to all the axes in a 6-link electro-hydraulic manipulator. It was confirmed that the performance of trajectory tracking and attitude regulating was greatly improved by the disturbance observer. For autonomous assembly tasks, it is said that compliance control is one of the most popular methods in contact task. We have proposed a compliance control based on the position control by a disturbance observer for our manipulator system. To realize more stable contact work, the states in the compliance loop are feedbacked, where not only displacement but also the velocity and acceleration are considered. We have also applied this compliance control to the Peg-in-Hole insertion task and proposed new methods of (1)rotating of the end-effector periodically in order to reduce the friction force, (2)random searching for the center of a hole and (3)trajectory modification to reduce the impact force. As a result of these new methods, it could be experimentally confirmed that the Peg-in-Hole insertion task with a clearance of 0.007 [mm] could be achieved.

Estimation of Hydraulic Parameters of a Fractured Rock Aquifer Using Derivative Analysis (변동량 분석을 이용한 암반대수층의 수리학적 매개변수 산출)

  • Kim, Bum-Su;Yang, Dong-Chul;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.46-52
    • /
    • 2010
  • Derivative analysis, based on the derivative of the drawdown as a function of time (i.e., rate of drawdown change), was applied to the evaluation of hydraulic parameters of the aquifer as an aid of the aquifer test interpretation based on the Theis solutions. Pumping tests were conducted at a coastal fractured aquifer in Muan county, Korea, of which the drawdown data, measured at the two observation wells, were used for derivative analysis. Wellbore storage and transition period were hard to identify at conventional log-log and semi long plots, but was easily recognized by distinctive curves of positive unit slope, hump and negative unit slope in the derivative plot. For the observation well of OW-2 at which wellbore storage and transition lasted over an hour, conventional aquifer analysis would suffer from the uniqueness problems and in further result in erroneous hydraulic parameters. Derivative analysis was found to be effective for distinguishing the drawdown data directly reflecting the aquifer property from those reflecting non aquifer effects such as wellbore storage and transition, which offers a unified methodology to yield correct hydraulic parameters from aquifer test data.

Development of a Hydraulic Servo Cylinder with an Integrated Feedback Mechamism (일체형 파드백 기구를 갖는 유압 서보실린더 개발 연구)

  • Lee, Jae-Gyu;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2480-2490
    • /
    • 1996
  • This paper presents a new type of hydraulic servo chllinder which is characterized by its simple construction and an ubtegrated feedback mechanism. Piston position of the cylinder is controlled by eletrical input and mechamical feedback deduced from its own structure. Hydraulic pressure in each cylinder room is controlled by a poppet valve. The poppet is activated by a solenoid and is linked to the piston. Solenoid input current pulls up the poppet, which results in pressure drop and thus piston motion. The piston motion generates pull down force on the poppet by the linkage and the motion stops at equilibrium. In that way the piston position is controlled by an expernal input current. Characteristics of the servo cylinder is verified by stability analysis, tranient vehavior and steady state positing for step input. Design parameter analyses have been executed by derivation of analytical approximate solutions and by computer simulations. A prototype hydraulic servo cylinder is developed and tested. The experimental results show successful function of the servo cylinder and consistency with the theoritical results.

Design Parameter Optimization of Rope Brake System far Elevator (엘리베이터용 로프 브레이크 시스템의 설계변수 최적화에 관한 연구)

  • 윤영환;최명진
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.85-94
    • /
    • 2001
  • Hydraulic systems of rope brake for elevators are modelled to evaluate design parameters such as cylinder pressure, pis-ton displacement, accumulator capacity, and so on. To assure the results, experiments were performed. The analysis results agree well with the experimental results. The scheme in this study is expected to be utilized in the design of rope brake system for elevators to get design parameters and to improve the safety.

  • PDF

A Study on the Dynamic Characteristics of Center Pivot Rocker Arm Type OHC Valve Trains with Hydraulic Lash Adjuster (유압식 밸브 간극 조정장치를 가진 중심지지 로커암형 OHC 밸브기구의 동특성에 관한 연구)

  • 김도중;신병현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.97-108
    • /
    • 1996
  • A modeling technique is proposed for dynamic simulations of OHC valve trains with HLA(hydraulic lash adiuster). HLA is expressed by an air-oil mixture model considering HLA leak-down and aeraton effects. A compact nonlinear equation is derived which describe the short term dynamic behavior of the HLA. Valve spring is analyzed by a distributed parameter model including nonlinear characteristics in the spring surge phenomena. Global behavior of the remaining valve train is expressed by a lumped mass model. The experiental results prove that the simulation model developed here is accurate and useful for the dynamic simulations of OHC valve trains with HLA.

  • PDF

Effect of Solidity on the Performance of Turbopump Inducer (현절비가 터보펌프 인듀서의 성능에 미치는 영향)

  • Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.382-388
    • /
    • 2004
  • The hydraulic and suction performance of an inducer varies sensitively with the inducer geometry and this paper deals with solidity as the inducer geometry parameter. The typical performance characteristics of a basic inducer was investigated and tests with another three inducers of which the solidity is different from each other were performed, so the effect of solidity on the inducer performance was experimentally investigated. For a fixed flow coefficient, required NPSH of the inducer did not follow the conventional similarity rule, so this paper suggested another empirical formula. The hydraulic and suction performance was measured at four cases of the tip solidity ranged from 1.32 to 2.76. As long as the tip solidity had the value above 1.84, the hydraulic and suction performance of the inducer increased with decrease in the tip solidity. With further decrease in the tip solidity up to 1.32, however, inducer head decreased and the suction performance dropped sharply.

Hybrid Self-Tuning Control of a Single rod Hydraulic Cylinder with Varying Payload (가변 하중을 갖는 편로드 유압 실린더의 합성 자기동조 제어)

  • Kim, M.S.;Kim, J.T.;Han, K.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.174-181
    • /
    • 1997
  • A proposed hybrid self-tuning control scheme for single rod hydraulic cylinder which has varying loads is presented here. An adaptive controller is developed for the system that use feedforward and P feedback control for simultaneous parameter identification and tracking control. Through experimental results, the performance comparison of the hybrid self-tuning controller with a constant gain P contro- ller clearly shows its superior ability in handling load changes in quiescent states.

  • PDF