• 제목/요약/키워드: hydraulic model test

검색결과 553건 처리시간 0.019초

배.급수관망의 잔류염소 확보를 위한 적정 재염소 주입량 산정 및 효과분석 (Computing the Dosage and Analysing the Effect of Optimal Rechlorination for Adequate Residual Chlorine in Water Distribution System)

  • 김도환;이두진;김경필;배철호;주혜은
    • 대한환경공학회지
    • /
    • 제32권10호
    • /
    • pp.916-927
    • /
    • 2010
  • 일반적으로 정수처리 공정에서 염소에 의한 소독공정은 수인성 질병을 억제하고 상수도관망에서 미생물의 재성장을 억제하는 목적으로 사용되고 있다. 그러나 염소소독은 수중의 유기물과 반응하여 소독부산물(Disinfection By-products; DBPs) 과 같은 발암성 물질을 생성함으로 적절한 염소 주입이 필요하고 최근에는 관말지역에서의 잔류염소 확보를 위해 상수관로 나 배수지 등에서 재염소를 실시하는 경향이 증가하고 있는 추세이다. 따라서 본 연구에서는 정수장에서 최적의 염소주입과 재염소 주입량을 산정하기 위하여 미국 EPA에서 개발한 EPANET 2.0을 사용하여 최적 염소 주입량을 산정하고 그 효과를 모의하였다. 대상지역 상수관로에 대한 수질을 모의하기 위하여 bottle test를 통해 수체감소계수($k_{bulk}$)를 도출하였으며, syster-matic analysis method를 이용하여 관벽감소계수($k_{wall}$)를 도출하였다. 배ㆍ급수계통에서의 수질을 정확히 예측하고자 유량과 체류시간 등을 고려한 수리해석 모델을 기초로 하여 상수도관망에서의 잔류염소 농도를 예측하고 염소주입 농도에 따른 소독부산물(DBPs)인 트리할로메탄(Trihalomethanes; THMs)의 생성변화를 실험을 통해 확인하였다. 수체감소계수($k_{bulk}$)를 도출한 결과 온도가 높을수록 초기에 빠른 감소를 보였으며, $25^{\circ}C$의 경우 25시간이 지난 이후에는 절반이상이 감소하였다. 대상지역에 재염소 주입시설을 도입할 경우 최적 재염소 주입량을 산정하였으며, 관망도상에서 경제적으로 유리한 지점을 선정할 수 있었다.

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

SEM파일의 이완하중 산정방법별 이완하중량 비교 연구 (A study on the comparison by the methods of estimating the relaxation load of SEM-pile)

  • 김형규;박은형;조국환
    • 한국터널지하공간학회 논문집
    • /
    • 제20권3호
    • /
    • pp.543-560
    • /
    • 2018
  • 도심지 지하공간의 개발과 운행선 하부를 저토피로 입체 교차화하는 시설 증가에 따라 비개착식 공법의 수요는 점차 증가추세에 있으나 대다수의 공법은 중대구경 강관을 압입하여 루프를 형성하고 내부를 굴착하는 파이프루프(Pipe roof) 계열의 공법이 주로 적용되고 있다. 강관 압입 시 발생되는 이완영역 및 하중은 여러 인자의 영향을 받게 되나 가장 큰 요소는 압입하는 강관의 크기에 좌우되며 이는 강관 루프 내 지중구조물에 작용하는 하중의 크기로 볼 수 있다. 지반의 교란 및 이완하중 발생을 최소화시키기 위해 개발된 SEM공법(Super Equilibrium Method)은 기존의 중대구경 강관 대신 ${\Phi}114mm$ 내외의 소구경 강관을 사용한다. 이 소구경 강관을 SEM파일로 명명하였으며 강관의 선 압입 및 그라우팅 보강을 실시한 후 지반의 침하나 융기 없이 지반 내 횡단구조물을 유압잭을 이용하여 압입하게 된다. 이와 같이 SEM공법의 구성 중 지보역할을 하는 SEM파일은 선단부 굴착 시 지반의 붕락을 방지하고 상재하중을 지지하기 위한 길이 5 m 내외의 Fore poling 파일이며 이 파일의 배치간격, 시공연장, 부재의 강성 등을 산정하기 위해서는 이완영역의 적절한 산정이 필수적이다. 본 논문은 SEM공법의 최적설계를 위하여 SEM파일 압입 시 발생되는 이완하중 산정 값을 비교분석하였다. 이완영역 산정에 근거한 주요 이론식 및 경험식들의 영향인자를 고려하여 분석하고 FEM analysis (유한요소 해석)를 수행하여 SEM파일에 적합한 이완하중 산정을 검토하였다. 또한 실제 SEM파일 압입 및 굴착 시 발생되는 지반이완을 확인하기 위해 강관압입 축소모형실험을 수행하였으며 토피고/강관(H/D)에 따른 지표침하 및 지반이완을 정량적으로 검토하였다.