• Title/Summary/Keyword: hydraulic flux

Search Result 200, Processing Time 0.024 seconds

A Study on the Design and Analysis of a Voice Coil Linear Force Motor for Hydraulic Valve (밸브구동용 보이스 코일 선형 포스모터 설계와 해석 연구)

  • Park, C.S.;Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • The voice coil linear force motor is a kind of a direct drive motion device that uses a permanent magnetic field and coil winding to produce force. In order to design a voice coil linear force motor, an exact calculations of the required force, the flux density in air gap and the flux pathway are needed. A conventional method can be used usually to calculate the flux density in air gap, but with this method it is needed to find a magnetic circuit revision constant. In this paper a voice coil linear force motor is designed by conventional design method and analyzed by 3D simulation program "Flux". For the prototype linear force motor, the results of the calculated by conventional design method and the analyzed by 3D simulation program are compared with the test result. Finally it is showed that the magnetic circuit revision constant which is found by comparing of the analyzed and the measured data can be used for the design of the voice coil type linear force motor to minimize the trial and error.

Flow Condensation Inside Mini-Channels (II) -Experimental Study of the Circular and Rectangular Channels- (작은 유로 내에서의 흐름응축 열전달 (II) -원형 및 사각유로에서의 실험적 연구-)

  • Shin, Jeong-Seob;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1432-1439
    • /
    • 2004
  • By using unique experimental techniques and careful construction of the experimental apparatus, the characteristics of the local heat transfer were investigated using the condensing R134a two-phase flow, in horizontal single mini-channels. The circular channels (D$_{h}$=0.493, 0.691, and 1.067 mm) and rectangular channels (Aspect Ratio=1.0, D$_{h}$=0.494, 0.658, and 0.972 mm) were tested and compared. Tests were performed for a mass flux of 100, 200, 400, and 600 kg/$m^2$s, a heat flux of 5 to 20 ㎾/$m^2$, and a saturation temperature of 4$0^{\circ}C$. In this study, effect of heat flux, mass flux, vapor qualities, hydraulic diameter, and channel geometry on flow condensation are investigated and the experimental local condensation heat transfer coefficients are shown. The experimental data of condensation Nusselt number are compared with existing correlations.ons.

High heat flux limits of the fusion reactor water-cooled first wall

  • Zacha, Pavel;Entler, Slavomir
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1251-1260
    • /
    • 2019
  • The water-cooled WCLL blanket is one of the possible candidates for the blanket of the fusion power reactors. The plasma-facing first wall manufactured from the reduced-activation ferritic-martensitic steel Eurofer97 will be cooled with water at a typical pressurized water reactor (PWR) conditions. According to new estimates, the first wall will be exposed to peak heat fluxes up to $7MW/m^2$ while the maximum operated temperature of Eurofer97 is set to $550^{\circ}C$. The performed analysis shows the capability of the designed flat first wall concept to remove heat flux without exceeding the maximum Eurofer97 operating temperature only up to $0.75MW/m^2$. Several heat transfer enhancement methods (turbulator promoters), structural modifications, and variations of parameters were analysed. The effects of particular modifications on the wall temperature were evaluated using thermo-hydraulic three-dimensional numerical simulation. The analysis shows the negligible effect of the turbulators. By the combination of the proposed modifications, the permitted heat flux was increased up to $1.69MW/m^2$ only. The results indicate the necessity of the re-evaluation of the existing first wall concepts.

A System Engineering Approach to Predict the Critical Heat Flux Using Artificial Neural Network (ANN)

  • Wazif, Muhammad;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.38-46
    • /
    • 2020
  • The accurate measurement of critical heat flux (CHF) in flow boiling is important for the safety requirement of the nuclear power plant to prevent sharp degradation of the convective heat transfer between the surface of the fuel rod cladding and the reactor coolant. In this paper, a System Engineering approach is used to develop a model that predicts the CHF using machine learning. The model is built using artificial neural network (ANN). The model is then trained, tested and validated using pre-existing database for different flow conditions. The Talos library is used to tune the model by optimizing the hyper parameters and selecting the best network architecture. Once developed, the ANN model can predict the CHF based solely on a set of input parameters (pressure, mass flux, quality and hydraulic diameter) without resorting to any physics-based model. It is intended to use the developed model to predict the DNBR under a large break loss of coolant accident (LBLOCA) in APR1400. The System Engineering approach proved very helpful in facilitating the planning and management of the current work both efficiently and effectively.

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.

Analytical Solution for Transient Groundwater Flow in Vertical Cutoff Walls : Application of Slug Test and Evaluation of Hydraulic Conductivity (연직차수벽의 비정상 지하수 흐름에 대한 이론해 : 순간변위시험(slug test) 적용과 투수계수 산정)

  • Lim, Jee-Hee;Lee, Dong-Seop;Nguyen, The Bao;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.17-31
    • /
    • 2012
  • No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results with consideration of transient flow. There is an analytical solution proposed to interpret a slug test performed in a partially penetrated well within an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions (i.e, constant head boundary and no flux boundary condition), the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Type curves are constructed from the currently derived analytical solution and compared with those of a partially penetrated well within an aquifer. The constant head boundary condition provides faster hydraulic head recovery curve than the aquifer case. On the other hand, no flux boundary condition leads to slower hydraulic head recovery. The bigger the shape factor and deviation of the well and the smaller the width of the vertical cutoff wall are, the more effect of boundary condition was observed. The type curves obtained from the analytical solution for a cutoff wall are similar to those made by the numerical method in the literature.

The Method for Evaluating Unsaturated Hydraulic Conductivity of the Bentonite-buffer Using Relative Humidity (상대습도를 이용한 벤토나이트 완충재의 불포화 수리전도도 평가방안)

  • Lee, Hang-Bok;Kim, Jin-Seop;Choi, Young-Chul;Choi, Heui-Joo;Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • Unsaturated hydraulic conductivity of the bentonite-buffer was evaluated using the relative humidity data. The method for calculating unsaturated hydraulic conductivity was deduced from the general analytical equation representing the movement of water in unsaturated media, which was applied to the experimental results of water infiltration tests for identifying the behavior of unsaturated hydraulic conductivity according to the water saturation. Unlike the saturated condition, the hydraulic gradient and water flux were irregularly changed, and the unsaturated hydraulic conductivity was increased with increasing the experimental time. Swelling of bentonite grains due to the water absorption increased the volume and size of pore within bentonite, resulting in the increase of water velocity and unsaturated hydraulic conductivity. This result suggested the necessity of further investigation on the correlation between the swelling degree of bentonite-buffer and unsaturated hydraulic conductivity. The method used in this study can be useful technique for evaluating long-term hydraulic performance of bentonite-buffer in the radioactive waste disposal system.

Classification of Soil Series by the Hydraulic Properties (수리학적 토양통군의 분류)

  • Park, Seung-Ki;Jeong, Jae-Hun;Lee, Chang-Soo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.217-220
    • /
    • 2002
  • This study was carried out to investigate the characteristics of the field-saturated hydraulic conductivity$(K_{fs})$ and matric flux potential$({\Phi}_m)$ measured by the Guelph Permeameter at the Backokpo watershed in the Han river and at the Bangdong watershed in the Keum river. And the Alpha $({\alpha})$ value which is the ratio of $K_{fs}$ to ${\Phi}_m$ were determined and the ${\alpha}$ values along with the defined soil series could be utilized to classify the soil in the Korean watershed into the SCS hydrologic soil groups.

  • PDF

Spray Plume Characteristics of Liquid Jets in Subsonic Crossflows (수직분사제트의 액적영역 분무특성에 대한 연구)

  • Song, Jin-Kwan;Ahn, Kyu-Bok;Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.113-120
    • /
    • 2006
  • The effect of internal liquid flow on spray plume characteristics was performed experimentally in subsonic cross flows. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of the research are to investigate the effect of internal liquid flow on the spray plume characteristics and compare the trajectory of spray plume with previous works. The results suggest that the trajectory and width of spray plume can be correlated as a function of liquid/air momentum flux ratio(q), injector diameter and normalized distance from the injector exit(x/d). It's also found that the injector internal turbulence influences the spray plume characteristics significantly.

  • PDF

Development of A Hybrid Type Electronic Brake System(EBS)

  • Lim, Chulki;Boo, Kwangsuck;Song, Jeonghoon;Hong, Soonyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.1-115
    • /
    • 2002
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes the problems of the conventional hydraulic brake system. The HEBS uses the contactless brake system when vehicle speed is high to obtain superior braking force by eddy current, which is induced in pole area by magnetic flux through a rotating conductive disk. On the contrary, when a vehicle speed is low, contact type brake system such as conventional hydraulic brake system makes higher braking force. HEBS transfers faster a braking intention of drivers and guarantees a safety of drivers because of vehicle dynamic superior controllability. Braking torque analysis is peformed based upon Lee. Barn\ulcornermath...

  • PDF