• Title/Summary/Keyword: hydraulic excavator

Search Result 162, Processing Time 0.019 seconds

Basic Design for Development of IMV for MCV (MCV용 IMV개발을 위한 기초설계)

  • Huh, Junyoung;Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.49-56
    • /
    • 2018
  • Construction machinery is used to improve productivity in civil engineering work and construction work, and it is a lengthy operation, and consumes considerable fuel to cope with large loads. As a result, productivity and fuel consumption of the construction machine become the main deciding factors. In the hydraulic system of the excavator, the main control valve is the most critical position for control. The flow distribution for control performance is achieved by the metering orifice, that causes critical energy loss. To improve this, we propose a combination of a three port proportional pressure reducing valve and a poppet type flow control valve as an IMV to replace the existing spool type MCV. To validate the proposal, we analyze static characteristics by modeling mathematically, and analyze dynamic characteristics. Simulation using the AMESim software on the regeneration circuit of the boom cylinder up-down operation, verifies the energy-saving effect compared to the existing MCV when IMV is used.

A Study on Driving Algorithm and Communication Characteristics for Remote Control of Mini Excavator (소형 굴삭기의 원격제어를 위한 주행 알고리즘 및 통신특성에 관한 연구)

  • Jeong, Jin Beom;Kim, Kyung Soo
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.81-90
    • /
    • 2018
  • Indoor construction site such as building demolition sites, tunnel, vinyl house, and cattle shed are subject to various risk factors such as falling stones, soot and bad odors. However, most of the mini excavators have no cabin that can protect the driver from such risk factors. Therefore, researches on remote control technology of construction equipment are actively conducted as a method for protecting the driver from the risk factors occurring in the working environment. For effective remote control, it is necessary to be able to control the travelling and work using a portable small transmitter. However, due to the limitation of the size of the transmitter, complex operation control is required to control two or more actuators with a single joystick. Also, it is essential to check how remote control characteristics change in various environments such as distance, signal strength, obstacle. Therefore, in this study, an algorithm that can control two actuators simultaneously with a single joystick signal was developed, and a communication method suitable for indoor and outdoor mini construction equipment by analyzing experimentally how the remote control characteristics vary according to various work environments and telecommunication methods proposed.