• 제목/요약/키워드: hydraulic calculation

검색결과 285건 처리시간 0.027초

내부세레이션홈을 갖는 스퍼어 기어의 단조에 관한 연구 (A Study on the Forging of Spur Gears with Internal Serrations)

  • 최종웅;조해용
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.81-89
    • /
    • 1998
  • Numerical calculation tools for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear. square spline, internal serrations. A complex calculation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper the workpiece with 110th external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool from combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with others and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

Correction and Experimental Verification of Velocity Circulation in a Double-blade Pump Impeller Outlet

  • Kai, Wang;Qiong, Liu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.311-317
    • /
    • 2015
  • It is difficulty to calculate velocity circulation in centrifugal pump impeller outlet accurately. Velocity circulations of a double-blade pump impeller outlet were calculated with Stodola formula, Weisner formula and Stechkin formula. Simultaneously, the internal flow of impeller for the double-blade pump were measured with PIV technology and average velocity circulations at the 0.8, 1.0 and 1.2 times of design flow were obtained. All the experimental values were compared with the above calculation values at the three conditions. The results show that calculation values of velocity circulations with Weisner formula is close to the experimental values. On the basis of the above, velocity circulations of impeller outlet were corrected. The results of experimental verification show that the corrected calculation errors, whose maximum error is 3.65%, are greatly reduced than the uncorrected calculation errors. The research results could provide good references for establishment of theoretical head and multi-condition hydraulic optimization of double-blade pumps.

인공슬롯을 고려한 수압파쇄 균열의 발전양상에 관한 연구 (The Analysis of Fracture Propagation in Hydraulic Fracturing using Artificial Slot Model)

  • 최성웅;이희근
    • 터널과지하공간
    • /
    • 제5권3호
    • /
    • pp.251-265
    • /
    • 1995
  • One of the most important matters in stress measurement by hydraulic fracturing technique is the determination of the breakdown pressure, reopening pressure, and shut-in pressure, since these values are the basic input data for the calculation of the in-situ stress. The control of the fracture propagation is also important when the hydraulic fracturing technique is applied to the development of groundwater system, geothermal energy, oil, and natural gas. In this study, a laboratory scale hydraulic fracturing device was built and a series of model tests were conducted with cube blocks of Machon gabbro. A new method called 'flatjack method' was adopted to determine shut-in pressure. The initial stress calculated from the shut-in pressure measured by flatjack method showed much higher accuracy than the stress determined by the conventional method. The dependency of the direction of fracture propagation on the state of the initial stresses was measured by introducin g artificial slots in the borehole made by water jet system. Numerical modeling by BEM was also performed to simulate the fracture propagation process. Both results form numerical and laboratory tests showed good agreement. From this study which provides the extensive results on the determination of shut-in pressure and the control of fracture propagation which are the critical issue in the recent hydraulic fracturing, it is conclued that in-situ stress measurement and the control of fracture propagation could be achived more accurately.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.498-507
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1502-1511
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

A comprehensive evaluation method study for dam safety

  • Jia, Fan;Yang, Meng;Liu, Bingrui;Wang, Jianlei;Gao, Jiaorong;Su, Huaizhi;Zhao, Erfeng
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.639-646
    • /
    • 2017
  • According to the multi-index system of dam safety assessment and the standard of safety, a comprehensive evaluation model for dam safety based on a cloud model is established to determine the basic probability assignment of the Dempster-Shafer theory. The Dempster-Shafer theory is improved to solve the high conflict problems via fusion calculation. Compared with the traditional Dempster-Shafer theory, the application is more extensive and the result is more reasonable. The uncertainty model of dam safety multi-index comprehensive evaluation is applied according to the two theories above. The rationality and feasibility of the model are verified through application to the safety evaluation of a practical arch dam.

A novel laboratory method for measuring the hydraulic conductivity of dredged slurry with high water contents

  • Cong Mou;Jian-wen Ding;Jian-hua Wang;Xing Wan
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.317-326
    • /
    • 2023
  • Accurately measuring the hydraulic conductivity of dredged slurry (HCODS) is a difficult task and usually requires highly developed experimental techniques. To resolve such problem, this paper presents a novel laboratory method, where a double drainage sedimentation test (DDST) is proposed to generate a downward seepage after the end of primary consolidation (EOP). Based on the established stress equilibrium equations, it is figured out that the determination of local hydraulic gradients requires the effective stress distribution to be measured. Accordingly, an additional single drainage sedimentation test (SDST) with the same initial water content is performed in the novel laboratory method, which can be utilized to establish the relationship between effective stress and water content for investigated slurry. Thus, HCODS can be determined via a pair of SDST and DDST, with the water contents after the EOP measured. The corresponding calculation procedure is given in details. With a simply-designed settling column, the hydraulic conductivity tests were performed on three types of dredged slurry. The results demonstrated the effectiveness of the novel laboratory method in measuring HCODS.

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.

하천 세굴심 산정을 위한 교각 세굴심 산정식의 적용성 검토 (Review on Applicability of Local Scour Depth Calculation Formula in River)

  • 민병윤;장형준;이호진;김성덕
    • 한국방재안전학회논문집
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2019
  • 교량을 건설함에 있어 물의 흐름에 영향을 받는 교량 하부 구조물에 대한 토질 및 구조역학적 기초 분석은 충분하지만 수리현상으로 발생하는 세굴의 안정성 검토는 미흡한 실정이다. 또한 교각세굴심 산정에 있어 해외 교각세굴심 산정식을 활용하고 있기에 국내 하천의 유역 특성을 반영한 교각세굴심을 정도 높게 산정하는데 미흡하다. 본 연구에서는 현재 우리나라 하천설계 기준에 적용되고 있는 CSU(1993)공식 뿐만 아니라 세굴심 산정에 있어 불확실성을 고려하기 위하여 다른 교각 세굴심 산정식을 추가로 적용하여 세굴심을 산정한 후 각각의 공식들 간에 적용성을 검토하였다. 검토 결과 기존 사용되고 있는 9개의 교각세굴심 산정식으로 산정된 교각 세굴심 깊이와 수리 모형실험을 바탕으로 측정된 세굴심과 비교하였을 경우 SSE(%)는 최소 2.08%, 최대 91.23%, SSEn(%)은 최소 0.19%, 최대 415.91%의 차이를 보이고 있음을 확인하였다. 그 결과, 교각세굴심 산정식 간에도 많은 차이가 있음을 확인하였다. 본 연구의 결과는 향후 하천설계에 있어 정도 높은 세굴심을 산정함에 활용할 수 있을 것으로 기대된다.

수치 유동 해석을 이용한 터보펌프용 인듀서의 성능 향상에 대한 연구 (Study on the performance improvement of turbopump inducer by numerical flow analysis)

  • 이경훈;김경호;김영수;우유철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.235-242
    • /
    • 2001
  • Hydraulic performance of LCH4 fuel inducer in turbopump system was predicted by 3-D Wavier-stokes calculation. The inducer was designed initially using 1-D method. Different parameters with blade angle and flow coefficient were set from the initial design one, md computation was fulfilled to assess the redesigned models. Especially, influence of inlet back flow on inducer performance and its effective control were explored. The numerical results showed that through reducing inlet back flow strength., the hydraulic efficiency of inducer could be improved up to about $20\%$ compared to that of the initial design one.

  • PDF