• Title/Summary/Keyword: hybridization technique

Search Result 147, Processing Time 0.022 seconds

Study on Preparation of Environmental-Friendly Specialty Paper Using Functional Antibiotic Nano-Particle (II) (기능성 항균 나노입자를 이용한 친환경성 특수지 제조에 관한 연구(II))

  • Cho, Jun-Hyung;Lee, Yong-Won;Kim, Hyoung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • For the purpose of antibacterial and photocatalystic deodorization functions, the papermaking inorganic fillers and pigments were surface-modified with Ag nano-colloidal solution and $TiO_2$ by using the hybridization technique. The functional specialty sheets and coating papers were produced with the surface-modified fillers and pigments, and evaluated by halo test and inhibition growth test in their antibacterial and photocatalystic characteristics. For the application of specially produced antibacterial handsheet to the wallpaper usages, the photocatalyst efficiency test of benzene in volatile organic compound dissolution experiment of antibacterial and deodorization function wallpaper showed that the efficiency was 45~50% for 80 min of reaction time and 90% of attained resolution was reached at approximately 30 min of response time.

An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening

  • Chang, Li-Jung;Chen, Shee-Uan;Tsai, Yi-Yi;Hung, Chia-Cheng;Fang, Mei-Ya;Su, Yi-Ning;Yang, Yu-Shih
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.3
    • /
    • pp.126-134
    • /
    • 2011
  • Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence $in-situ$ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.

Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner

  • Ziv Frankenstein;Naohiro Uraoka;Umut Aypar;Ruth Aryeequaye;Mamta Rao;Meera Hameed;Yanming Zhang;Yukako Yagi
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.4.1-4.12
    • /
    • 2021
  • Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

Antiviral Effects of Natural Products on the Inhibition of Hepatitis B Virus DNA Replication in 2.2.15 Cell Culture System

  • Nam, Kung-Woo;Chang, Il-Moo;Choi, Jae-Sue;Hwang, Ki-Jun;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • v.2 no.2
    • /
    • pp.130-136
    • /
    • 1996
  • Evaluation of plant extracts that might inhibit hepatitis B virus (HBV) replication was performed to find potent anti-HBV agents. Eighty-five species of plants from forty-three families were tested for their anti-HBV activities using HBV-producing HepG2-derived 2.2.15 cells. The anti-HBV activity of plant extracts was measured by slot blot hybridization technique and cytotoxicity was determined by crystal violet staining procedure. All plants were extracted with methanol and the extracts were partitioned into n-hexane, ethyl acetate and aqueous layer. The ethyl acetate fractions of Rhus verniciflua $(stem:\;EC_{50},\;8.2{\mu}g/ml;\;CC_{50},\;9.4{\mu}g/ml)$, Gastrodia elata $(root:\;EC_{50},\;17.7{\mu}g/ml;\;CC_{50},\;>20{\mu}g/ml)$, Raphanus sativus $(seeds:\;EC_{50},\;17.3{\mu}g/ml;\;CC_{50},\;>20{\mu}g/ml)$, and Angelica gigas $(root:\;EC_{50},\;8.3{\mu}g/ml;\;CC_{50},\;15.6{\mu}g/ml)$ revealed the anti-HBV activity in 2.2.15 cell culture system and these fractions are under the process of further sequential fractionation by column chromatography to find the active principles against HBV.

  • PDF

Single Nucleotide Polymorphisms[SNPs] of DNA repair genes; hMLH1, hMSH2 and ATM in Healthy Korean (한국인에서의 DNA repair gene[hMLH1, hMSH2 및 ATM]의 Single Nucleotide Polymorphisms[SNPs]의 빈도)

  • 정현숙;김태연;조윤희;김양지;정해원
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Single nucleotide polymorphisms (SNPs) are alterations in DNA base that occur most frequently throughout the human genome. The SNPs of DNA repair genes, hMLH1, hMSH2 and ATM, among 100 Korean people were analyzed using Dynamic Allele specific Hybridization (DASH) techniques. Mutation at the position of exon 38 (GA) and exon 10 (CG) of ATM gene, mutation at the position of exon 8 (AG), and exon 1 (AG) of hMLH1 gene and exon 14 (AG) of hMSH2 gene were investigated. No mutation at the selected position of ATM gene and hMSH1 gene was found. However, while there was no mutation at the position of exon of hMSH2 gene, mutation was found at the promotion region (CT) with the frequency of 24% CC, 36% CT and 62% TT genotyes. This results might be used as baseline data for research on SNP of Korean population.

  • PDF

A Simple Method for Combined Fluorescence In Situ Hybridization and Immunocytochemistry

  • Moon, Il Soo;Cho, Sun-Jung;Jin, IngNyol;Walikonis, Randall
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.76-82
    • /
    • 2007
  • By combining in situ hybridization (ISH) and immunocytochemistry (IC), microscopic topological localization of mRNAs and proteins can be determined. Although this technique can be applied to a variety of tissues, it is particularly important for use on neuronal cells which are morphologically complex and in which specific mRNAs and proteins are located in distinct subcellular domains such as dendrites and dendritic spines. One common technical problem for combined ISH and IC is that the signal for immunocytochemical localization of proteins often becomes much weaker after conducting ISH. In this manuscript, we report a simplified but robust protocol that allows immunocytochemical localization of proteins after ISH. In this protocol, we fix cultured cortical or hippocampal neurons with 4% paraformaldehyde (PFA), rinse briefly in PBS, and then further fix the cells with $-20^{\circ}C$ methanol. Our method has several major advantages over previously described ones in that (1) it is simple, as it is just consecutive routine fixation procedures, (2) it does not require any special alteration to the fixation procedures such as changes in salt concentration, and (3) it can be used with antibodies that are compatible with either methanol (MeOH-) or PFA-fixed target proteins. To our best knowledge, we are the first to employ this fixation method for fluorescence ISH + IC.

An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning (기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법)

  • Ho, Thi Kieu Khanh;Kim, Inki;Jeon, Younghoon;Song, Jong-In;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF

Diagnosis of Tuberculosis; Serodiagnosis and Molecular Biologic Approach (결핵진단의 면역학적 및 분자생물학적 방법)

  • Shin, Wan-Shik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • The diagnosis of tuberculosis is usually established using staining and culturing techniques. Fluorescent stains have improved the sensitivity of direct microscopy. Improved culture media coupled with radiometric means of detecting early mycobacterial growth have shortened the time needed for cultural diagnosis. Rapid immunodiagnostic techniques based on the detection of mycobacterial antigen or of antibodies to theses antigens have not, however, come into widespread clinical use. The DNA or RNA hybridization tests with labeled specific probes which have been described so far are not sensitive enough to be used for clinical speicimens without prior culturing. The advent of the polymerase chain reaction (PCR) has opened new possibilities for diagnosis of microbial infections. This technique has already been applied to a number of microorganisms. In the field of mycobacteria the PCR has been used to identify and to detect DNAs extracted from various mycobacteria. However, despite the extraordinary enthusiasm surrounding this technique and the considerable investiment, PCR has not emerged from the developmental "trenches" in the passed several years. It may be a considerable lenth of time before clinical microbiology laboratories become PCR playgrounds because many details remain to be worked out.

  • PDF

Taxonomic Study of Bacillus coagulans by Deoxyribonucleic Acid-Deoxyribonucleic Acid Hybridization Technique (DNA-DNA Hybridization에 의한 Bacillus coagulans의 분류학적 연구)

  • Chung, Chi-Kwan
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.4
    • /
    • pp.166-178
    • /
    • 1976
  • Taxonomic study of 11 strains of Bacillus coagulans and 14 strains of 13 spccies of Bacillus by deoxyribonucleic acid (DNA)-DNA hybridization were conducted. Among the 11 strains of B. coagulans, 6 were isolated from soil and the rest were the authentic strains obtained from American Type culture collection (ATCC) or the Institute for Fermentation, Osaka (IFO). All strains were examined to confirm as they are expected species of B. coagulans by the methods of Cordon et al. according to Bergey's Manual (8th ed.). The intraspecific DNA homology indexes among the 11 strains of B. coagulans using strain ATCC 7050 as the standard ($^3$H labeled input DNA) showed 76% or, more, respectively. These findings accorded well with the results of the conventional taxonomic study according to the Bergey's Manual. The interspecific DNA homology indexes between B. coagulant strain ATCC 7050 and the type cultures of B. subtilis (168), B. licheniformis (IFO 12107), B. pumilus (IFO 12110), B. firmus (ATCC 14575), B. lentus (ATCC 10840), B. circulans (ATCC 4513), B. macelans (ATCC 8244), B. polymyxa (ATCC 842), B. sphaericus (ATCC 14577), B. brevis (ATCC 8246, IFO 12334), B. laterosporus (ATCC 64), and B. pantothenticus (ATCC 14576) respectively, showed 2 to 4%, while that of between B. coagulans ATCC 7050 and Escherichia coli K-12 was less than 1 %.

  • PDF