• Title/Summary/Keyword: hybrid-switching

Search Result 312, Processing Time 0.018 seconds

Short-term Effects of Switching from Cigarette Smoking to Using Heated Tobacco Products on Cardiac Autonomic Regulation (담배 흡연에서 가열담배 사용으로의 단기간 전환에 따른 심장 자율신경 반응)

  • Dong Kyu Kim;Maeng Kyu Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.639-650
    • /
    • 2023
  • The levels of harmful components in aerosols from heated tobacco products (HTPs) have been reported to be significantly lower than in cigarette smoke. However, it remains unclear whether the use of HTPs can mitigate the cardiovascular risks associated with cigarette smoking (CS). The objective of this study was to investigate the effects of a short-term switch from CS to HTP use on cardiac autonomic regulation (CAR). Seven healthy male smokers completed an open-label, randomized, cross-over trial consisting of five days of CS, use of three different HTPs (IQOS use, IQ; lil SOLID use, LS; lil HYBRID use, LH), or non-smoking (NS). Each session was separated by a one-week washout period, and levels of exhaled carbon monoxide (CO) and carboxyhemoglobin (COHb), systolic (SBP) and diastolic blood pressure (DBP), and heart rate variability (HRV) reflecting CAR were assessed before use of the product assigned to each session and at 24, 48, 72, 96, and 120 hr after use. Levels of exhaled CO and COHb were statistically significantly reduced only during NS. There were no statistical changes in SBP and DBP within any session. However, in HRV spectral analysis, log-transformed high frequency (lnHF) increased statistically significantly in IQ, LS, and NS, respectively. Normalized HF (HFnu) was significantly increased in NS and LH, respectively. lnHF and HFnu showed significant interaction effects. The findings of this study suggest that a short-term switch to HTPs instead of CS may lead to different distribution patterns of CAR, primarily driven by enhanced cardiac vagal tone.

Fruiting body development and genetic analysis of somatic hybrids by protoplast fusion in edible fungi (식용버섯의 원형질체 융합체의 자실체 발생 및 유전분석)

  • Yoo, Young Bok;Kong, Won Sik;Oh, Se Jong;Jhune, Chang Sung;Shin, Pyung Gyun;Kim, Beom Gi;Kim, Gyu Hyun;Park, Minsun;Min, Byung Re
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.115-126
    • /
    • 2004
  • Somatic hybrids of inter-compatible and inter-incompatible strains were obtained by protoplast fusion. The fusion products between compatible strains, Pleurotus ostreatus and P. florida, formed heterokaryons, while fusants between incompatible strains such as P. cornucopiae + P. florida, P. ostreatus + Ganoderma applanatum, P. florida + Ganoderma lucidum, and P. ostreatus + Flammulina velutipes formed synkaryons that retained genes from both parents. The heterokaryons showed the same level of basidioma development. In contrast, the synkaryons showed unique characteristics including clamp connection formation at mitosis, either partner basidioma development, and abnormal segregation and recombination compared with inter-compatible strains. Synkaryons can be classified into homokaryoyic and heterokaryotic type. A comparison of somatic hybrids with compatible and incompatible strains was made using random amplified polymorphic DNA (RAPD) analysis. The heterokaryons between compatible species showed the same level of variability and contained both parental RAPD bands. In contrast, most of the synkaryons between incompatible species showed similarity to those of either parental bands and non-parental RAPD bands. Synkaryons can be classified into microgenome insertion type and macrogenome insertion type. A tetrapolar mating system was found among monospore isolates in somatic hybrids and wild type P. ostreatus. Homokaryons from each somatic hybrid combination were paired with tester homokaryons of the initial wild type of P. ostreatus. The changed mating types were identified in progenies. The pattern of mating type switching in somatic hybrids depends on compatibility of fusion partner. There are several factors related to the mechanism of clamp connection formation and fruiting body development of synkaryons. Of these,the major factor may be associated with self-fertility and mating type switching such as homokaryotic fruiting of wild type P. ostreatus. This review will discuss these aspects.

  • PDF