• Title/Summary/Keyword: hybrid testing

Search Result 338, Processing Time 0.025 seconds

A new mount with moving-magnet type electromagnetic actuator for naval shipboard equipment

  • Shin, Yun-Ho;Moon, Seok-Jun;Kwon, Jeong-Il;Jung, Woo-Jin;Jeon, Jae-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • This study is proposed a new hybrid mount having a moving-magnet type electromagnetic actuator to reduce the vibration transmitted from naval shipboard equipment to the structure of the ship's hull. Optimal design specifications are determined through experimental analysis. The detailed design of the hybrid mount is determined through several design steps with electromagnetic numerical analysis using Maxwell Software(S/W). The hybrid mount that combines a rubber mount and an electromagnetic actuator has a fail-safe function for shock resistance. The mount is fabricated and tested using a universal testing machine to evaluate the design specifications. Finally, numerical simulation of the hybrid mount is performed to confirm control performance and applicability.

Prediction Performance of Hybrid Least Square Support Vector Machine with First Principle Knowledge (First Principle을 결합한 최소제곱 Support Vector Machine의 예측 능력)

  • 김병주;심주용;황창하;김일곤
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.744-751
    • /
    • 2003
  • A hybrid least square Support Vector Machine combined with First Principle(FP) knowledge is proposed. We compare hybrid least square Support Vector Machine(HLS-SVM) with early proposed models such as Hybrid Neural Network(HNN) and HNN with Extended Kalman Filter(HNN-EKF). In the training and validation stage HLS-SVM shows similar performance with HNN-EKF but better than HNN, whereas, in the testing stage, it shows three times better than HNN-EKF, hundred times better than HNN model.

Effects of Hybrid Coat on shear bond strength of five cements: an in-vitro study

  • Guo, Yue;Zhou, Hou-De;Feng, Yun-Zhi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • PURPOSE. To evaluate the sealing performance of Hybrid Coat and its influence on the shear bond strength of five dentin surface cements. MATERIALS AND METHODS. Six premolars were pretreated to expose the dentin surface prior to the application of Hybrid Coat. The microscopic characteristics of the dentinal surfaces were examined with scanning electron microscopy (SEM). Then, 40 premolars were sectioned longitudinally, and 80 semi-sections were divided into a control group (untreated) and a study group (treated by Hybrid Coat). Alloy restoration was bonded to the teeth specimen using five different cements. Shear bond strength was measured by the universal testing machine. The fracture patterns and the adhesive interface were observed using a stereomicroscope. RESULTS. SEM revealed that the lumens of dentinal tubules were completely occluded by Hybrid Coat. The Hybrid Coat significantly improved the shear bond strength of resin-modified glass ionomer cement (RMGIC) and resin cement (RC) but weakened the performance of zinc phosphate cement (ZPC), zinc polycarboxylate cement (ZPCC) and glass ionomer cement (GIC). CONCLUSION. Hybrid Coat is an effective dentinal tubule sealant, and therefore its combined use with resin or resin-modified glass ionomer cements can be applied for the prostheses attachment purpose.

Mechanical Properties and Wear Behaviour of $Al/SiC/Al_{2}O_{3}$ Composite Materials ($Al/SiC/Al_{2}O_{3}$복합재료의 기계적 성질 및 마멸특성)

  • 임흥준;김영한;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2498-2508
    • /
    • 1993
  • $Al/SiC/Al_{2}O_{3}$ hybrid composites are fabricated by squeeze infiltration method. From the misconstructive of $Al/SiC/Al_{2}O_{3}$ hybrid composites fabricated by squeeze infiltration method, uniform distribution of reinforcements and good bondings are found. Hardness value of $Al/SiC/Al_{2}O_{3}$ hybrid composites increases linearly with the volume fraction of reinforcement because SiC whisker and $Al_{2}$O$_{3}$ fiber have an outstanding hardness. Optimal aging conditions are obtained by examining the hardness of $Al/SiC/Al_{2}O_{3}$ hybrid composites with different aging time. Tensile properties such as Young's modulus and ultimate tensile strength are improved up to 30% and 40% by the addition of reinforcements, respectively. Failure mode of $Al/SiC/Al_{2}O_{3}$ hybrid composites is ductile on microstructural level. Through the abrasive wear test and wear surface analysis, wear behaviour and mechanism of 6061 aluminum and $Al/SiC/Al_{2}O_{3}$ hybrid composites are characterized under various testing conditions. The addition of SiC whisker to $Al/SiC/Al_{2}O_{3}$ composites gives rise to improvement of the wear resistance. The wear resistance of $Al/SiC/Al_{2}O_{3}$ hybrid composites is superior to that of Al/SiC composites. The wear mechanism of aluminum alloy is mainly abrasive wear at low speed range and adhesive and melt wear at high speed range. In contrast, that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is abrasive wear at all speed range, but severe wear when counter material is stainless steel. As the testing temperature increases, wear loss of aluminum alloy decreases because the matrix is getting more ductile, but that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is hardly varied. Oil lubricant is more effective to reduce the wear loss of aluminum alloy and $Al/SiC/Al_{2}O_{3}$ hybrid composites at high speed range.

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

Performance Evaluation of Controlling Seismic Responses of a Building Structure with a Tuned Liquid Column Damper using the Real-Time Hybrid Testing Method (실시간 하이브리드 실험법을 이용한 동조액체기둥감쇠기가 설치된 구조물의 지진응답 제어성능 평가)

  • Chung, Hee-San;Lee, Sung-Kyung;Park, Eun-Churn;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.669-673
    • /
    • 2007
  • In this study, real-time hybrid test using a shaking table for the control performance evaluation of a U-shaped TLCD controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a U-shaped TLCD adopted as an experimental part was installed to reduceits response. At first, the force that is acting between a TLCD and building structure is measured from the load cell attached on shaking table and is fed-back to the computer to control the motion of shaking table. Then, the shaking table is so driven that the error between the interface acceleration computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the shaking table. The control efficiency of the TLCD used in this paper is experimentally confirmed by implementing this process of shaking table experiment on real-time.

  • PDF

Enhanced Technique for Performance in Real Time Systems (실시간 시스템에서 성능 향상 기법)

  • Kim, Myung Jun
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.103-111
    • /
    • 2017
  • The real time scheduling is a key research area in high performance computing and has been a source of challenging problems. A periodic task is an infinite sequence of task instance where each job of a task comes in a regular period. The RMS (Rate Monotonic Scheduling) algorithm has the advantage of a strong theoretical foundation and holds out the promise of reducing the need for exhaustive testing of the scheduling. Many real-time systems built in the past based their scheduling on the Cyclic Executive Model because it produces predictable schedules which facilitate exhaustive testing. In this work we propose hybrid scheduling method which combines features of both of these scheduling algorithms. The original rate monotonic scheduling algorithm didn't consider the uniform sampling tasks in the real time systems. We have enumerated some issues when the RMS is applied to our hybrid scheduling method. We found the scheduling bound for the hard real-time systems which include the uniform sampling tasks. The suggested hybrid scheduling algorithm turns out to have some advantages from the point of view of the real time system designer, and is particularly useful in the context of large critical systems. Our algorithm can be useful for real time system designer who must guarantee the hard real time tasks.

Comparison of Full-Field Stresses around an Inclined Crack Tip by Using Fringe Data of Finite Element Method with Photoelastic Experiment

  • Baek, Tae-Hyun;Kim, Myung-Soo;Chen, Lei
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.557-562
    • /
    • 2009
  • Abrupt change of cross-section in mechanical parts is one of significant causes of structural fracture. In this paper, a hybrid method is employed to analyze the stress distribution of a discontinuous plate. The plate with an inclined crack is utilized in our experiment and the stress field in the vicinity of crack tip is calculated through isochromatic fringe order of given points. This calculation can be made handy through least-squares method integrated with complex power series representation(Laurent series) implemented on a computer program for high-speed processing. In order to accurately compare calculated results with experimental ones, both of actual and regenerated photoelastic fringe patterns are doubled and sharpened by digital image processing. The experiment results show that regenerated patterns obtained by hybrid method are quite comparable to actual patterns.

In-Use Compliance Emission Testing Analysis Applied in LabVIEW for Engineers

  • Mikhail, Ghaly-Rezk;Lee, Chun-Beom;Choi, Seong-Joo
    • Journal of Practical Engineering Education
    • /
    • v.6 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • Analyzing test data of a vehicle for evaluating its emission performance is an essential process in automotive development field, yet it is intricate and tedious task. In addition, clear understanding and care are required when the analysis process is carried out. Computer software solutions significantly reduce the time and the effort for such analysis. Developing a computer routine to analyze the emission data in a vehicle test demands a complete understanding of the emissions analysis and its related details. In this paper, the principals to develop a LabVIEW analysis routine (VI) are introduced helping automotive engineers comprehend the emission analysis process of a vehicle test data and instruct them to develop similar routines for such analysis.

Performance Testing of an Integrated Hybrid Actuator (집적형 하이브리드 구동장치의 성능시험)

  • Xuan, Zhefeng;Jin, Tailie;Goo, Nam Seo;Bae, Byung-Woon;Kim, Tae-Heun;Ko, Han Seo;Yoon, Ki-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, operation principle and performance testing of the hybrid actuator were introduced. Output velocities have been measured in both loaded case and not loaded case and the blocking force also has been measured in external loaded case. The maximum velocity of the actuator is 53.3 mm/s, blocking force is 240.7 N and corresponding power output is 3.2 W.