• Title/Summary/Keyword: hybrid strengthening

Search Result 62, Processing Time 0.025 seconds

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

Ductile Strengthening of Reinforced Concrete Beams by Partially Unbonded NSM Hybrid FRP Rebars (부분 비부착 NSM Hybrid FRP 보강근에 의한 철근콘크리트보의 연성보강)

  • Lee, Cha-Don;Chung, Sang-Mo;Won, Jong-Pil;Lee, Sng-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.143-153
    • /
    • 2003
  • New strengthening method based on Near Surface Mounted technique (NSM) is suggested, which can overcome the brittle nature of failure inherent to those reinforced concrete beams strengthened with FRP composite materials. The suggested technique secures ductile failure of reinforced concrete beams by having the strengthening Hybrid FRP rebars unbonded in parts. Experiments were performed in order to compare structural behaviors of strengthened beams with and without unbending along the Hybrid FRP rebars. Test results showed that only those beams strengthened by partially unbonded NSM failed in ductile manner. Theoretical expressions were derived for the minimum unbonded length of Hybrid FRP rebars with which ultimate strength of the reinforced concrete beam with partially unbonded NSM could be reached. The suggested partially unbonded NSM technique is expected to significantly improve the structural behavior of the strengthened beam with FRP composite materials.

Experimental Evaluation on Strengthening of NSM and! Section Increment with FRP Rebars (FRP 보강근을 이용한 표면매립 및 단면확대공법의 실험적 성능평가)

  • 정상모;이차돈;원종필;황윤국;김정호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.549-554
    • /
    • 2003
  • In order to overcome the brittle failure of strengthening with FRP-rebars inherent to their brittle properties, two approaches have been attempted. One is to improve the properties like ductile Hybrid FRP Rods, and the other is to develop a ductile strengthening with partially unbonded FRP rebars. Experiments on real size specimen were performed to evaluate the performance of NSM (Near Surface Mounted Strengthening) and SIM (Section Increment Methods) with FRP rebars. This paper discusses the results of the tests on 8 slab specimen in terms of flexural resistance, ductility, and fatigue. They show that NSM or S1M with FRP rebars are very effective measures to strengthen existing RC structures. Above all, strengthening with partially unbonded ductile Hybrid FRP Rods shows sufficient ductility similar to that of properly designed RC structures.

  • PDF

A Study on the Development of the Next Generation Composite Materials(Hybrid Composites with Non-Woven Tissue) (차세대 복합재료의 개발에 관한 연구(부직포 삽입형 하이브리드 복합재료))

  • ;Hiroshi Noguchi
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.195-198
    • /
    • 2001
  • To improve the properties of FRP composite materials, the hybrid prepreg with non-woven tissue (NWT) is developed. The hybrid prepreg consists of undirectional prepreg and NWT prepreg. The NWT prepreg is made by compounding the NWT and polymer resin, which is similar to the production method of FRP prepreg. The NWT has short fibers which are discretely distributed with in-plane random orientation. The stiffness and strength of NWT composites are lower than those of continuously fibrous composites. The strengthening technique and fabricating technique for the hybrid prepreg are described in this work. The mechanical characteristics of hybrid composites with NWT are discussed and compared with those of the FRP composites.

  • PDF

Properties of Ductile Hybrid FRP Sheet for Strengthening of Reinforced Concrete Beams (철근콘크리트 보의 보강용 연성 하이브리드 FRP 시트의 특성)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.509-510
    • /
    • 2009
  • In strengthening reinforced concrete beams using fiber reinforced polymer sheets, brittle structural failures occur due to the linear stress-strain relationship of the fibers. Hybrid fiber reinforced polymer sheets using two different types of fibers were investigated in this study

  • PDF

Strengthening Mechanism of Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites (섬유/입자 혼합 금속복합재료의 강화기구 해석)

  • 정성욱;이종해;정창규;송정일;한경섭
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.50-60
    • /
    • 2000
  • This paper presents an analytical method considering tensile strength enhancement in hybrid $Al_2O_3$ fiber/particle/aluminum composites(MMCs). The tensile strength and elastic modulus of the hybrid MMCs are even 20% higher than those of the fiber reinforced MMCs with same volume fraction of reinforcements. This phenomenon is explained by the cluster model which is newly proposed in this research, and the strengthening mechanisms by a cluster is analyzed using simple modified rule of mixtures. From the analysis, it is observed that cluster structure in hybrid MMCs increase the fiber efficiency factor for the tensile strength and the orientation factor for the elastic modulus. The present theory is then compared with experimental results which was performed using squeeze infiltrated hybrid MMCs made of hybrid $Al_2O_3$ short fiber/particle preform and AC8A alloy as base metal, and the agreement is found to be satisfactory.

  • PDF

Flexural behavior of reinforced concrete beams strengthened with a hybrid inorganic matrix - steel fiber retrofit system

  • Papakonstantinou, Christos G.;Katakalos, Konstantinos
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.567-585
    • /
    • 2009
  • The aim of this study was to investigate the flexural behavior of reinforced concrete beams strengthened with a novel strengthening system. Concrete beams were strengthened with a hybrid retrofit system consisting of high strength steel cords impregnated in an inorganic fireproof matrix (Geopolymer). The strengthened reinforced concrete beams along with non-strengthened control beams were tested monotonically under four point bending loading conditions. Moreover, an analytical model is introduced, that can be used to analyze the flexural performance of the strengthened beams. The experimental results indicate that the failure of the strengthened beams was based on the yielding of the reinforcement in the tension face of the beams, followed by a local slippage of the steel cords. The flexural stiffness of the strengthened beams was significantly improved compared to the stiffness of the non-strengthened beams. In conclusion, the strengthening system can provide an effective alternative to commercially available systems.

A study on Strengthening and Rehabilitation of Concrete girder bridge using Multi-Stepwise Thermal Prestressing Method (온도프리스트레싱 공법을 이용한 콘크리트교량의 보수보강에 관한 연구)

  • Kim, Sang-Hyo;Ahn, Jin-Hee;Kim, Jun-Hwan;Lee, Sang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.238-241
    • /
    • 2006
  • The needs for strengthening and rehabilitation of the concrete bridges are a growing concern in many countries and has been emphasized in various researches and papers. Traditional external post-tensioning method using either steel bars or tendons is commonly used as a strengthening method. However, the method has some disadvantages such as stress concentration at the anchorages. Multi-stepwise thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts on strengthening and rehabilitation of concrete girder are presented and an illustrative experiment is introduced.

  • PDF

Flexural performance of wooden beams strengthened by composite plate

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.233-259
    • /
    • 2020
  • Using bonded fiber-reinforced polymer laminates for strengthening wooden structural members has been shown to be an effective and economical method. In this research, properties of suitable composite materials (sika wrap), adhesives and two ways of strengthening beams exposed to bending moment are presented. Passive or slack reinforcement is one way of strengthening. The most effective way of such a strengthening was to place reinforcement laminates in the stretched part of the wooden beam (lower part in our case), in order to investigate the effectiveness of externally bonding FRP to their soffits. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the wooden beam, the sika wrap composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-wooden hybrid structures. The results showed that the use of the new strengthening system enhances the performance of the wooden beam when compared with the traditional strengthening system.