• 제목/요약/키워드: hybrid steel fibers

검색결과 73건 처리시간 0.029초

Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete

  • Tahmouresi, Behzad;Koushkbaghi, Mahdi;Monazami, Maryam;Abbasi, Mahdi Taleb;Nemati, Parisa
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.193-206
    • /
    • 2019
  • Although concrete is the most widely used construction material, its deficiency in shrinkage and low tensile resistance is undeniable. However, the aforementioned defects can be partially modified by addition of fibers. On the other hand, possibility of adding waste materials in concrete has provided a new ground for use of recycled concrete aggregates in the construction industry. In this study, a constant combination of recyclable coarse and fine concrete aggregates was used to replace the corresponding aggregates at 50% substitution percentage. Moreover, in order to investigate the effects of fibers on mechanical and durability properties of recycled aggregate concrete, the amounts of 0.5%, 1%, and 1.5% steel fibers (ST) and 0.05%, 0.1% and 0.15% polypropylene (PP) fibers by volumes were used individually and in hybrid forms. Compressive strength, tensile strength, flexural strength, ultrasonic pulse velocity (UPV), water absorption, toughness, elastic modulus and shrinkage of samples were investigated. The results of mechanical properties showed that PP fibers reduced the compressive strength while positive impact of steel fibers was evident both in single and hybrid forms. Tensile and flexural strength of samples were improved and the energy absorption of samples containing fibers increased substantially before and after crack presence. Growth in toughness especially in hybrid fiber-reinforced specimens retarded the propagation of cracks. Modulus of elasticity was decreased by the addition of PP fibers while the contrary trend was observed with the addition of steel fibers. PP fibers decreased the ultrasonic pulse velocity slightly and had undesirable effect on water absorption. However, steel fiber caused negligible decline in UPV and a small impact on water absorption. Steel fibers reduce the drying shrinkage by up to 35% when was applied solely. Using fibers also resulted in increasing the ductility of samples in failure. In addition, mechanical properties changes were also evaluated by statistical analysis of MATLAB software and smoothing spline interpolation on compressive, flexural, and indirect tensile strength. Using shell interpolation, the optimization process in areas without laboratory results led to determining optimal theoretical points in a two-parameter system including steel fibers and polypropylene.

강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트의 슬럼프 및 역학적 특성 (Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete)

  • 양근혁
    • 콘크리트학회논문집
    • /
    • 제22권5호
    • /
    • pp.651-658
    • /
    • 2010
  • 콘크리트의 슬럼프와 역학적특성에 대한 마이크로 섬유와 매크로 섬유의 영향을 파악하기 위하여 강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트 16배합과 무보강 콘크리트 1배합을 실험하였다. 주요 변수는 강섬유와 PVA 섬유의 체적비 및 길이이다. 하이브리드 섬유보강 콘크리트의 역학적특성들은 섬유보강지수에 따라 분석되었으며, 강섬유 또는 PVA 섬유만으로 보강된 콘크리트와 비교하였다. 하이브리드 섬유보강 콘크리트의 슬럼프는 섬유 체적비와 형상비 증가와 함께 감소하였으며, 할렬인장강도, 파괴계수, 탄성계수 및 휨 인성지수는 섬유보강지수의 증가와 함께 증가하였다. 단일 섬유보강 콘크리트의 섬유체적비에 비해 낮은 체적비를 갖는 하이브리드 섬유보강 콘크리트의 파괴계수와 휨인성지수는 단일 섬유보강 콘크리트에 비해 높았다. 하이브리드 섬유보강 콘크리트의 휨 인성 향상을 위해서는 30 mm와 60 mm 길이의 강섬유를 함께 사용하는 것보다는 60 mm 강섬유만을 사용하는 것이 효율적이었다.

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.

Effect of hybrid fibers on flexural performance of reinforced SCC symmetric inclination beams

  • Zhang, Cong;Li, Zhihua;Ding, Yining
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.209-220
    • /
    • 2018
  • In order to evaluate the effect of hybrid fibers on the flexural performance of tunnel segment at room temperature, twelve reinforced self-consolidating concrete (SCC) symmetric inclination beams containing steel fiber, macro polypropylene fiber, micro polypropylene fiber, and their hybridizations were studied under combined loading of flexure and axial compression. The results indicate that the addition of mono steel fiber and hybrid fibers can enhance the ultimate bearing capacity and cracking behavior of tested beams. These improvements can be further enhanced along with increasing the content of steel fiber and macro PP fiber, but reduced with the increase of the reinforcement ratio of beams. The hybrid effect of steel fiber and macro PP fiber was the most obvious. However, the addition of micro PP fibers led to a degradation to the flexural performance of reinforced beams at room temperature. Meanwhile, the hybrid use of steel fiber and micro polypropylene fiber didn't present an obvious improvement to SCC beams. Compared to micro polypropylene fiber, the macro polypropylene fiber plays a more prominent role on affecting the structural behavior of SCC beams. A calculation method for ultimate bearing capacity of flexural SCC symmetric inclination beams at room temperature by taking appropriate effect of hybrid fibers into consideration was proposed. The prediction results using the proposed model are compared with the experimental data in this study and other literature. The results indicate that the proposed model can estimate the ultimate bearing capacity of SCC symmetric inclination beams containing hybrid fibers subjected to combined action of flexure and axial compression at room temperature.

Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete

  • Ganesan, N.;Sahana, R.;Indira, P.V.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.75-86
    • /
    • 2017
  • An experimental work was carried out to study the effect of hybrid fiber on the tension stiffening and cracking characteristics of geopolymer concrete (GPC). A total of 24 concentrically reinforced concrete specimens were cast and tested under uniaxial tension. The grade of concrete considered was M40. The variables mainly consist of the volume fraction of crimped steel fibers (0.5 and 1.0%) and basalt fibers (0.1, 0.2 and 0.3%). The load deformation response was recorded using LVDT's. At all the stages of loading after the first cracking, crack width and crack spacing were measured. The addition of fibers in hybrid form significantly improved the tension stiffening effect. In this study, the combination of 0.5% steel fiber and 0.2% basalt fiber gave a better comparison than the other combinations.

강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상 (Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers)

  • 허광희;박종건;서동주;고성곤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.48-59
    • /
    • 2021
  • 본 연구에서는 다른 재료특성을 갖는 강섬유 또는 탄소섬유만을 사용한 단일 섬유보강 모르타르(fiber-reinforced mortar, FRM)와 강 및 탄소 섬유를 혼합사용한 하이브리드 FRM의 압축·휨성능을 조사하기 위해 실험을 수행하였다. 모르타르 시편은 총 섬유혼입률 1.0%에서 부피에 의한 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% 및 0+1%의 혼합비율로 강섬유와 탄소섬유를 혼입하였다. 이들의 역학적 성능을 재령 28일에서 섬유가 없는 플레인 모르타르와 비교, 검토하였다. 모르타르의 실험결과는 강섬유 0.75% + 탄소섬유 0.25%를 혼합사용한 하이브리드 FRM가 가장 높은 압축강도와 휨강도를 나타내, 하이브리드 FRM의 시너지 보강효과를 확인할 수 있었다. 반면, 강섬유 0.5% + 탄소섬유 0.5%를 혼합사용한 하이브리드 FRM의 경우 가장 높은 휨인성을 얻었으며, 본 실험결과를 토대로 강도와 휨인성을 동시에 개선하기 위한 하이브리드 FRM의 최적의 섬유 혼합비율을 제시하였다. 게다가, FRM 시편의 이미지 분석을 위해 주사전자현미경(scanning electron microscope, SEM)을 통해 파단면을 관찰하였다. 이들 결과는 시멘트 매트릭스 내에서 하이브리드 보강섬유의 이미지 분석을 하는 데 큰 도움이 되었다.

하이브리드 강섬유 사용에 따른 초고성능 콘크리트의 인성 향상 평가 (Evaluation of Advanced Ductility of Ultra High Performance Concrete with Hybrid type of Steel Fiber)

  • 류금성;고경택;강수태;박정준;강현진;김성욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.437-438
    • /
    • 2010
  • 본 연구에서는 하이브리드 강섬유를 사용한 초고성능 콘크리트의 휨거동특성에 미치는 효과를 평가 하였다. 하이브리드 섬유 사용 UHPC의 휨거동을 평가한 결과, 하이브리드 강섬유를 체적비로 2% 혼입 시 단독으로 강섬유를 사용하는 경우에 비해 휨강도가 약 27%(최대 50%)이상 향상되었고, 1.5% 혼입 시 현행 UHPC의 휨강도를 상회하고 있는 것으로 나타났다.

  • PDF

Mechanical behavior of hybrid steel-PVA fibers reinforced reactive powder concrete

  • Poorhoseina, Reza;Nematzadeh, Mahdi
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.167-179
    • /
    • 2018
  • Reactive powder concrete (RPC) is a type of ultra-high strength cement-based material with a dense microstructure, which is made of ultra-fine powders. RPC demonstrate a very brittle behavior, thus adding fibers improves its mechanical properties. In this study, it was attempted to investigate the effect of using steel and polyvinyl alcohol (PVA) fibers as well as their combination on the properties of RPC. In this regard, hooked-end crimped steel fibers together with short PVA fibers were utilized. Steel and PVA fibers were used with the maximum volume fraction of 3% and 0.75%, respectively, and also different combinations of these fibers were used with the maximum volume fraction of 1% in the concrete mixes. In total, 107 concrete specimens were prepared, and the effect of fiber type and volume fraction on the physico-mechanical properties of RPC including compressive strength, tensile strength, modulus of elasticity, density, and failure mode was explored. In addition, the effect of the curing type on the properties of compressive strength, modulus of elasticity, and density of RPC was evaluated. Finally, coefficients for conversion of cubic compressive strength to cylindrical one for the RPC specimens were obtained under the two curing regimes of heat treatment and standard water curing.

Fire resistance of hybrid fiber reinforced SCC: Effect of use of polyvinyl-alcohol or polypropylene with single and binary steel fiber

  • Kazim Turk;Ceren Kina;Esma Balalan
    • Advances in concrete construction
    • /
    • 제16권1호
    • /
    • pp.1-20
    • /
    • 2023
  • This study presents the experimental results performed to evaluate the effects of Polyvinyl-alcohol (PVA) and Polypropylene (PP) fibers on the fresh and residual mechanical properties of the hybrid fiber reinforced SCC before and after the exposure of 250℃, 500℃ and 750℃ temperatures. The compressive and splitting tensile strength, modulus of rupture (MOR), ultrasonic pulse velocity (UPV) as well as toughness and weight loss were investigated at different temperatures. PVA and PP fibers were added into SCC mixtures having only macro steel fiber and also having binary hybridization of both macro and micro steel fiber. The results showed that the use of micro steel fiber replaced by macro steel fiber improved the fresh and hardened properties compared to the use of only macro steel fiber. Moreover, it was emphasized that PVA or PP enhanced the residual flexural performance of SCC, generally, while it negatively influenced the workability, weight loss, UPV and the residual strengths with regards to the use of single steel fiber and binary steel fiber hybridization. Compared to the effect of synthetic fibers, PP had slightly more positive effect in the view of workability while PVA enhanced the residual mechanical properties more.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.