• Title/Summary/Keyword: hybrid model

Search Result 2,565, Processing Time 0.026 seconds

In vivo quantification of mandibular bone remodeling and vascular changes in a Wistar rat model: A novel HR-MRI and micro-CT fusion technique

  • Song, Dandan;Shujaat, Sohaib;Zhao, Ruiting;Huang, Yan;Shaheen, Eman;Van Dessel, Jeroen;Orhan, Kaan;Velde, Greetje Vande;Coropciuc, Ruxandra;Pauwels, Ruben;Politis, Constantinus;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • v.50 no.3
    • /
    • pp.199-208
    • /
    • 2020
  • Purpose: This study was performed to introduce an in vivo hybrid multimodality technique involving the coregistration of micro-computed tomography (micro-CT) and high-resolution magnetic resonance imaging (HR-MRI) to concomitantly visualize and quantify mineralization and vascularization at follow-up in a rat model. Materials and Methods: Three adult female rats were randomly assigned as test subjects, with 1 rat serving as a control subject. For 20 weeks, the test rats received a weekly intravenous injection of 30 ㎍/kg zoledronic acid, and the control rat was administered a similar dose of normal saline. Bilateral extraction of the lower first and second molars was performed after 10 weeks. All rats were scanned once every 4 weeks with both micro-CT and HR-MRI. Micro-CT and HR-MRI images were registered and fused in the same 3-dimensional region to quantify blood flow velocity and trabecular bone thickness at T0 (baseline), T4 (4 weeks), T8 (8 weeks), T12 (12 weeks), T16 (16 weeks), and T20 (20 weeks). Histological assessment was the gold standard with which the findings were compared. Results: The histomorphometric images at T20 aligned with the HR-MRI findings, with both test and control rats demonstrating reduced trabecular bone vasculature and blood vessel density. The micro-CT findings were also consistent with the histomorphometric changes, which revealed that the test rats had thicker trabecular bone and smaller marrow spaces than the control rat. Conclusion: The combination of micro-CT and HR-MRI may be considered a powerful non-invasive novel technique for the longitudinal quantification of localized mineralization and vascularization.

An Analysis of Sectoral GHG Emission Intensity from Energy Use in Korea (기후변화 협약 대응을 위한 산업별 온실가스 배출 특성 분석)

  • Chung, Whan-Sam;Tohno, Susumu;Shim, Sang-Yul
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.2
    • /
    • pp.264-286
    • /
    • 2008
  • In 2006, the share of energy in Korea amounted to 28% from the total import, 97% from overseas dependency, and 83% for the national Greenhouse Gas (GHG) emission in 2004. Thus, from the aspects of economical and environmental policies, an energy analysis is very important, for the industry to cope with the imminent pressure for climate change. However, the estimation of GHG gas emissions due to an energy use is still done in a primitive way, whereby each industry's usage is multiplied by coefficients recommended from international organizations in Korea. At this level, it is impossible to formulate the prevailing logic and policies in face of a new paradigm that seeks to force participation of developing countries through so called post-Kyoto Protocol. In this study, a hybrid energy input-output (E-IO) analysis is conducted on the basis of the input-output(IO) table of 2000 issued by the Bank of Korea in 2003. Furthermore, according to economic sectors, emission of the GHG relative to an energy use is characterized. The analysis is accomplished from four points of view as follows: 1) estimating the GHG emission intensity by 96 sectors, 2) measuring the contribution ratio to GHG emissions by 14 energy sources, 3) calculating the emission factor of 3 GHG compounds, and 4) estimating the total amount of national GHG emission. The total amount estimated in this study is compared with a national official statistical number. The approach could be an appropriate model for the recently spreading concept of a Life Cycle Analysis as it analyzes not only a direct GHG emission from a direct energy use but also an associated emission from an indirect use. We expect this model can provide a form for the basis of a future GHG reduction policy making.

  • PDF

Impact of Ensemble Member Size on Confidence-based Selection in Bankruptcy Prediction (부도예측을 위한 확신 기반의 선택 접근법에서 앙상블 멤버 사이즈의 영향에 관한 연구)

  • Kim, Na-Ra;Shin, Kyung-Shik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.55-71
    • /
    • 2013
  • The prediction model is the main factor affecting the performance of a knowledge-based system for bankruptcy prediction. Earlier studies on prediction modeling have focused on the building of a single best model using statistical and artificial intelligence techniques. However, since the mid-1980s, integration of multiple techniques (hybrid techniques) and, by extension, combinations of the outputs of several models (ensemble techniques) have, according to the experimental results, generally outperformed individual models. An ensemble is a technique that constructs a set of multiple models, combines their outputs, and produces one final prediction. The way in which the outputs of ensemble members are combined is one of the important issues affecting prediction accuracy. A variety of combination schemes have been proposed in order to improve prediction performance in ensembles. Each combination scheme has advantages and limitations, and can be influenced by domain and circumstance. Accordingly, decisions on the most appropriate combination scheme in a given domain and contingency are very difficult. This paper proposes a confidence-based selection approach as part of an ensemble bankruptcy-prediction scheme that can measure unified confidence, even if ensemble members produce different types of continuous-valued outputs. The present experimental results show that when varying the number of models to combine, according to the creation type of ensemble members, the proposed combination method offers the best performance in the ensemble having the largest number of models, even when compared with the methods most often employed in bankruptcy prediction.

Study on Water Stage Prediction Using Hybrid Model of Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘의 결합모형을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.721-731
    • /
    • 2010
  • The rainfall-runoff relationship is very difficult to predict because it is complicate factor affected by many temporal and spatial parameters of the basin. In recent, models which is based on artificial intelligent such as neural network, genetic algorithm fuzzy etc., are frequently used to predict discharge while stochastic or deterministic or empirical models are used in the past. However, the discharge data which are generally used for prediction as training and validation set are often estimated from rating curve which has potential error in its estimation that makes a problem in reliability. Therefore, in this study, water stage is predicted from antecedent rainfall and water stage data for short term using three models of neural network which trained by error back propagation algorithm and optimized by genetic algorithm and training error back propagation after it is optimized by genetic algorithm respectively. As the result, the model optimized by Genetic Algorithm gives the best forecasting ability which is not much decreased as the forecasting time increase. Moreover, the models using stage data only as the input data give better results than the models using precipitation data with stage data.

Impact of Model-Based Iterative Reconstruction on the Correlation between Computed Tomography Quantification of a Low Lung Attenuation Area and Airway Measurements and Pulmonary Function Test Results in Normal Subjects

  • Kim, Da Jung;Kim, Cherry;Shin, Chol;Lee, Seung Ku;Ko, Chang Sub;Lee, Ki Yeol
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1187-1195
    • /
    • 2018
  • Objective: To compare correlations between pulmonary function test (PFT) results and different reconstruction algorithms and to suggest the optimal reconstruction protocol for computed tomography (CT) quantification of low lung attenuation areas and airways in healthy individuals. Materials and Methods: A total of 259 subjects with normal PFT and chest CT results were included. CT scans were reconstructed using filtered back projection, hybrid-iterative reconstruction, and model-based IR (MIR). For quantitative analysis, the emphysema index (EI) and wall area percentage (WA%) were determined. Subgroup analysis according to smoking history was also performed. Results: The EIs of all the reconstruction algorithms correlated significantly with the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) (all p < 0.001). The EI of MIR showed the strongest correlation with FEV1/FVC (r = -0.437). WA% showed a significant correlation with FEV1 in all the reconstruction algorithms (all p < 0.05) correlated significantly with FEV1/FVC for MIR only (p < 0.001). The WA% of MIR showed the strongest correlations with FEV1 (r = -0.205) and FEV1/FVC (r = -0.250). In subgroup analysis, the EI of MIR had the strongest correlation with PFT in both eversmoker and never-smoker subgroups, although there was no significant difference in the EI between the reconstruction algorithms. WA% of MIR showed a significantly thinner airway thickness than the other algorithms ($49.7{\pm}7.6$ in ever-smokers and $49.5{\pm}7.5$ in never-smokers, all p < 0.001), and also showed the strongest correlation with PFT in both ever-smoker and never-smoker subgroups. Conclusion: CT quantification of low lung attenuation areas and airways by means of MIR showed the strongest correlation with PFT results among the algorithms used, in normal subjects.

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

Clinical Practice Experience including Web-based Simulation Practice of Nursing Students during the COVID-19 Pandemic (코로나19 팬데믹 시기에 간호대학생의 웹 기반 시뮬레이션 실습을 포함한 임상 실습 경험)

  • Kim, Kyung Sook;Park, Ji Min
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.81-93
    • /
    • 2022
  • The purpose of this study is to understand the meaning of clinical practice experience, including web-based simulation practice, in the context of the corona pandemic era. As for the research method, data were collected through a focus group interview on the experience of web-based simulation practice and subsequent clinical practice and analyzed by content analysis method. The contents of the two interview groups were analyzed, and the results were divided into 2 components, 7 topic groups, and 18 topics. The first component, the clinical practice, was divided into four topic groups: 'The anxious start of practice in a pandemic situation', 'Direct experience through various cases', 'Training opportunities to prepare as a future nurse', and 'The burden of performance and limited experience'. The second component, the web-based simulation practice, was divided into three topic groups: 'Unfinished nursing practice', 'Indirect experience of clinical nursing in virtual space', and 'Requirement of an integrated practice model'. Clinical practice is a very important part of the nursing education curriculum. However, the nursing that students can perform in the field is very limited. Therefore, to supplement the shortcomings of observation-oriented clinical practice and to increase the quality of practical education, it is necessary to consider a hybrid education model including web-based simulation practice.

Development of crop harvest prediction system architecture using IoT Sensing (IoT Sensing을 이용한 농작물 수확 시기 예측 시스템 아키텍처 개발)

  • Oh, Jung Won;Kim, Hangkon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • Recently, the field of agriculture has been gaining a new leap with the integration of ICT technology in agriculture. In particular, smart farms, which incorporate the Internet of Things (IoT) technology in agriculture, are in the spotlight. Smart farm technology collects and analyzes information such as temperature and humidity of the environment where crops are cultivated in real time using sensors to automatically control the devices necessary for harvesting crops in the control device, Environment. Although smart farm technology is paying attention as if it can solve everything, most of the research focuses only on increasing crop yields. This paper focuses on the development of a system architecture that can harvest high quality crops at the optimum stage rather than increase crop yields. In this paper, we have developed an architecture using apple trees as a sample and used the color information and weight information to predict the harvest time of apple trees. The simple board that collects color information and weight information and transmits it to the server side uses Arduino and adopts model-driven development (MDD) as development methodology. We have developed an architecture to provide services to PC users in the form of Web and to provide Smart Phone users with services in the form of hybrid apps. We also developed an architecture that uses beacon technology to provide orchestration information to users in real time.

A Study on Public Interest-based Technology Valuation Models in Water Resources Field (수자원 분야 공익형 기술가치평가 시스템에 대한 연구)

  • Ryu, Seung-Mi;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.177-198
    • /
    • 2018
  • Recently, as economic property it has become necessary to acquire and utilize the framework for water resource measurement and performance management as the property of water resources changes to hold "public property". To date, the evaluation of water technology has been carried out by feasibility study analysis or technology assessment based on net present value (NPV) or benefit-to-cost (B/C) effect, however it is not yet systemized in terms of valuation models to objectively assess an economic value of technology-based business to receive diffusion and feedback of research outcomes. Therefore, K-water (known as a government-supported public company in Korea) company feels the necessity to establish a technology valuation framework suitable for technical characteristics of water resources fields in charge and verify an exemplified case applied to the technology. The K-water evaluation technology applied to this study, as a public interest goods, can be used as a tool to measure the value and achievement contributed to society and to manage them. Therefore, by calculating the value in which the subject technology contributed to the entire society as a public resource, we make use of it as a basis information for the advertising medium of performance on the influence effect of the benefits or the necessity of cost input, and then secure the legitimacy for large-scale R&D cost input in terms of the characteristics of public technology. Hence, K-water company, one of the public corporation in Korea which deals with public goods of 'water resources', will be able to establish a commercialization strategy for business operation and prepare for a basis for the performance calculation of input R&D cost. In this study, K-water has developed a web-based technology valuation model for public interest type water resources based on the technology evaluation system that is suitable for the characteristics of a technology in water resources fields. In particular, by utilizing the evaluation methodology of the Institute of Advanced Industrial Science and Technology (AIST) in Japan to match the expense items to the expense accounts based on the related benefit items, we proposed the so-called 'K-water's proprietary model' which involves the 'cost-benefit' approach and the FCF (Free Cash Flow), and ultimately led to build a pipeline on the K-water research performance management system and then verify the practical case of a technology related to "desalination". We analyze the embedded design logic and evaluation process of web-based valuation system that reflects characteristics of water resources technology, reference information and database(D/B)-associated logic for each model to calculate public interest-based and profit-based technology values in technology integrated management system. We review the hybrid evaluation module that reflects the quantitative index of the qualitative evaluation indices reflecting the unique characteristics of water resources and the visualized user-interface (UI) of the actual web-based evaluation, which both are appended for calculating the business value based on financial data to the existing web-based technology valuation systems in other fields. K-water's technology valuation model is evaluated by distinguishing between public-interest type and profitable-type water technology. First, evaluation modules in profit-type technology valuation model are designed based on 'profitability of technology'. For example, the technology inventory K-water holds has a number of profit-oriented technologies such as water treatment membranes. On the other hand, the public interest-type technology valuation is designed to evaluate the public-interest oriented technology such as the dam, which reflects the characteristics of public benefits and costs. In order to examine the appropriateness of the cost-benefit based public utility valuation model (i.e. K-water specific technology valuation model) presented in this study, we applied to practical cases from calculation of benefit-to-cost analysis on water resource technology with 20 years of lifetime. In future we will additionally conduct verifying the K-water public utility-based valuation model by each business model which reflects various business environmental characteristics.

Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

  • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-92
    • /
    • 2014
  • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.