• 제목/요약/키워드: hybrid membranes

검색결과 104건 처리시간 0.022초

DMFC용 PVDF/SPEEK/TiO2 하이브리드 막의 수분함량과 메탄올 전이현상 (Liquid Uptake and Methanol Transport Behaviour of PVDF/SPEEK/TiO2 Hybrid Membrane for DMFC)

  • 유선경;김한주;박수길
    • 전기화학회지
    • /
    • 제8권4호
    • /
    • pp.177-180
    • /
    • 2005
  • 유 무기 혼성 막의 계열은 티타니움 디옥사이드 나노파티클 함량의 체계적인 변화에 의해 조제된다. 유 무기 혼성 막의 수분함량, 메탄올 투과도와 전자 전도 특성은 무기 산화물의 함량의 기능에 따라 연구된다. 그 결과 망상구조의 무기 산화물은 전자 전도 특성과 수분함량의 감소를 보였다. 또한 무기 산화물의 함량이 증가할수록 메탄올 투과도도 감소함을 나타내었다. 형태학적인 관점에서 막은 폴리머 기반과 무기영역 사이에 균일하고 잘 점착됨을 보여준다. 혼성막의 특성은 나피온막과 비교 실험되었다.

Inorganic-organic Hybrid Proton Conductive Membranes Doped with Phosphoric Acid

  • Huang Sheng-Jian;Lee Yong Su;Lee Hoi Kwn;Kang Won Ho
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 춘계학술대회
    • /
    • pp.96-99
    • /
    • 2004
  • A new proton conductive inorganic-organic hybrid membrane doped with $H_3PO_4$ was fabricated via sol-gel process wit 3- glycidoxypropyltrimethoxysilane(GPTMS), 3-aminopropyltriethoxysilane(APTES) and tetraethoxysilane(TEOS) asprecursors. Theproto conductivity of about 3.0$\times10^{-3}S/cm$ was obtained at $120^{\circ}C$ under $50\%$ relative humidity (R.H). DTA curves showed that the thermal stability of the membrane is significantly enhanced by the presence of $SiO_2$ framework up to $250^{\circ}C$. SEM and XRD revealed that the gel is microporou and amorphous. The addition of APTES improved the conductivity of the membranes and the effect of the APTES on the conductivity was also discussed in this paper.

  • PDF

막과 텐세그러티를 이용한 하이브리드 구조물의 단위 구조 제안 (A Study on the Unit System of Hybrid System Using the Membrane and Tensegrity)

  • 서삼열;고광웅
    • 한국공간구조학회논문집
    • /
    • 제5권2호
    • /
    • pp.81-87
    • /
    • 2005
  • The Space structures may have large freedom in scale and form. And especially Hybrid structures are received much attention from the view points of their light weight and aesthetics. Hybrid systems are stable structures which are reticulated spatial structures composed of compressive straight members, struts and cables and Membranes. In this paper, The Hybrid Unit System are suggested using the Membrane and Cable elements based on the Tensegrity Unit system. Also, The Hybrid System of double-layered single curvature is presented. We analyze the force density method allowing form-finding for Tensegrity systems. And We analyze the shape analysis by the LARSH which is the program for nonlinear analysis.

  • PDF

Influence of Silica Content in Crosslinked PVA/PSSA_MA/Silica Hybrid Membrane for Direct Methanol Fuel Cell (DMFC)

  • Kim, Dae-Sik;Guiver, Michael D.;Seo, Mu-Young;Cho, Hyun-Il;Kim, Dae-Hoon;Rhim, Ji-Won;Moon, Go-Young;Nam, Sang-Yong
    • Macromolecular Research
    • /
    • 제15권5호
    • /
    • pp.412-417
    • /
    • 2007
  • In the present study, crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at different temperatures using poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) (PVA:PSSA_MA = 1:9). The hybrid mem-branes were prepared by varying the TEOS content between 5 and 30 wt%. The PSSA_MA was used both as a crosslinking agent and the hydrophilic group donor ($-SO_3H$ and/or-COOH). The proton conductivity increased with up to 20 wt% TEOS, but decreased above this level, although the water content decreased with increasing TEOS content. This result suggests that the silica doped into the membrane improved the formation of proton-conduction pathways due to the absorption of molecular water. The PVA/PSSA_MA/Silica containing TEOS 20% showed both high proton conductivity (0.026 S/cm at $90^{\circ}C$) and low methanol permeability ($5.55{\times}10^{-7}cm^2/s$).

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • 제2권1호
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.

Preparation and Characterization of $TiO_2$Filled Sulfonated Poly(ether ether ketone) Nanocomposite Membranes for Direct Methanol Fuel Cells

  • Kim Han-Joo;Kalappa Prashantha;Son Won-Keun;Park Jong-Eun;Oshaka Tetsuya;Kim Hyun-Hoo;Hong Ji-Sook;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권4호
    • /
    • pp.165-170
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticle content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.