• Title/Summary/Keyword: hybrid medium access control protocol

Search Result 13, Processing Time 0.018 seconds

Hybrid Priority Medium Access Control Scheme for Wireless Body Area Networks (무선 인체통신 네트워크를 위한 복합 우선순위 MAC 기법)

  • Lee, In-Hwan;Lee, Gun-Woo;Cho, Sung-Ho;Choo, Sung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1305-1313
    • /
    • 2010
  • Last few years, wireless personal area network (WPAN) has been widely researched for various healthcare applications. Due to restriction of device hardware (e.g., energy and memory), we need to design a highly-versatile MAC layer protocol for WBAN (Wireless Body Area Network). In addition, when an emergency occurs to a patient, a priority mechanism is necessitated for a urgent message to get through to the final destination. This paper presents a priority mechanism referred to as hybrid priority MAC for WBAN. Through extensive simulation, we show the proposed MAC protocol can minimize the average packet latency for urgent data. Thus, when patients have an emergency situation, our MAC allows adequate assistance time and medical treatment for patients. The simulation based on NS-2 shows that our Hybrid Priority MAC has the good performance and usability.

QoS Aware Cross-layer MAC Protocol in wireless Sensor Networks (무선 센서 네트워크에서 QoS를 인지하는 Cross-layer MAC 프로토콜)

  • Park, Hyun-Joo;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2811-2817
    • /
    • 2010
  • In this paper we propose the QAC-MAC that supports Quality of Service(QoS) and saves energy resources of the sensor node, and hence prolonging the lifetime of the sensor network with multiple sink nodes. Generally, the nodes nearest to the sink node often experience heavy congestion since all data is forwarded toward the sink through those nodes. So this critically effects on the delay-constraint data traffics. QAC-MAC uses a hybrid mechanism that adapts scheduled scheme for medium access and scheduling and unscheduled scheme based on TDMA for no data collision transmission. Generally speaking, characteristics of the real-time traffic with higher priority tends to be bursty and has same destination. QAC-MAC adapts cross-layer concept to rearrange the data transmission order in each sensor node's queue, saves energy consumption by allowing few nodes in data transmission, and prolongs the network lifetime.

Selection of Cross-layered Retransmission Schemes based on Service Characteristics (서비스 특성을 고려한 다 계층 재전송 방식 선택)

  • Go, Kwang-Chun;Kim, Jae-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.3-9
    • /
    • 2015
  • The wireless communication system adopts an appropriate retransmission scheme on each system protocol layer to improve reliability of data transmission. In each system protocol layer, the retransmission scheme operates in independently other layers and operates based on the parameters without reference to end-to-end performance of wireless communication system. For this reason, it is difficult to design the optimal system parameters that satisfy the QoS requirements for each service class. Thus, the performance analysis of wireless communication system is needed to design the optimal system parameters according to the end-to-end QoS requirements for each service class. In this paper, we derive the mathematical model to formulate the end-to-end performance of wireless communication system. We also evaluate the performance at the MAC and transport layers in terms of average spectral efficiency and average transmission delay. Based on the results of performance evaluations, we design the optimal system parameters according to the QoS requirements of service classes. From the results, the HARQ combined with AMC is appropriate for the delay-sensitive service and the ARQ combined with AMC is appropriate for a service that is insensitive to transmission delay. Also, the TCP can be applied for the delay-insensitive service only.