• 제목/요약/키워드: hybrid main memory system

검색결과 22건 처리시간 0.02초

바다물결 모형의 합성 및 GPU를 이용한 시뮬레이션 (Synthesis of Ocean Wave Models and Simulation Using GPU)

  • 이동민;이성기
    • 정보처리학회논문지A
    • /
    • 제14A권7호
    • /
    • pp.421-434
    • /
    • 2007
  • 컴퓨터 그래픽스로 재현되는 많은 자연현상 중의 하나인 바다는 주변 환경에 의해 계속해서 움직이며 복잡한 형태를 나타낼 뿐만 아니라 그 규모가 거대하기 때문에 만족스러운 영상을 얻기 위해서는 많은 계산시간을 필요로 한다. 본 논문에서는 GPU를 연산유닛으로 활용하여 무한히 넓은 바다표면의 움직임을 실시간으로 빠르게 시뮬레이션하고 사실적으로 렌더링하기 위한 방법을 제안한다. 제안하는 방법은 Gerstner 모델에 의해 2차원 투사 격자에서 생성된 저해상도의 메쉬로 바다의 전체적인 구조와 큰 물결을 표현하고, 스펙트럼 모델에 의해 2차원 균일격자에서 생성된 높이 맵과 법선 맵을 사용하여 작은 물결과 자세한 수면의 모습을 표현한다. 전체 과정이 GPU에 의해 처리되기 때문에 CPU자원을 다른 연산에 양보할 수 있을 뿐만 아니라 시스템 메모리와 그래픽스 하드웨어 사이에 기하정보(geometry data)의 이동이 없어 보다 빠른 렌더링이 가능하다. 제안하는 방법은 컴퓨터 게임과 같이 계산량이 많고 빠른 처리가 요구되는 실시간 애플리케이션에 활용 가능성이 크다.

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • 박철현;오재응;노영균;이상태;김문덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF