• Title/Summary/Keyword: hybrid magnet

Search Result 203, Processing Time 0.031 seconds

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

A Study on the Optimization Strategy using Permanent Magnet Pole Shape Optimization of a Large Scale BLDC Motor (대용량 BLDC 전동기의 영구자석 형상 최적화를 통한 최적화 기법 연구)

  • Woo, Sung-Hyun;Shin, Pan-Seok;Oh, Jin-Seok;Kong, Yeong-Kyung;Bin, Jae-Goo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.897-903
    • /
    • 2010
  • This paper presents a response surface method(RSM) with Latin Hypercube Sampling strategy, which is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed LHS algorithm consists of the multi-objective Pareto optimization and (1+1) evolution strategy. The algorithm is compared with the uniform sampling point method in view points of computing time and convergence. In order to verify the developed algorithm, a 6 MW BLDC motor is simulated with 4 design parameters (arc length and 3 variables for magnet) and 4 constraints for minimizing of the cogging torque. The optimization procedure has two stages; the fist is to optimize the arc length of the PM and the second is to optimize the magnet pole shape by using the proposed hybrid algorithm. At the 3rd iteration, an optimal point is obtained, and the cogging torque of the optimized shape is converged to about 14% of the initial one. It means that 3 iterations aregood enough to obtain the optimal design parameters in the program.

An Analytical Study on the Magnetic Levitation System Using a Halbach Magnet Array (Halbach 배열 영구자석을 이용한 자기 부상계의 해석에 관한 연구)

  • Moon, Seok-Jun;Yun, Dong-Won;Cho, Hung-Je;Park, Sung-Whan;Kim, Byung-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1077-1085
    • /
    • 2007
  • Typically, three types of levitation technologies are applied to magnetic levitation systems: electromagnetic suspension, electrodynamic suspension, and hybrid electromagnetic suspension. A Halbach array is a special arrangement of permanent magnets which augments the magnetic field on one side of the device while cancelling the field to near zero on the other side. The application of this Halbach array magnet to the electrodynamic suspension has been recently studied in order to increase the levitation capability. This paper is focused on an analytical method of the magnetic levitation system using Halbach array magnet. The suitability of the proposed method is verified with comparing to the finite element method. In addition, dynamic stability of the magnetic levitation system is discussed. From this study, it is confirmed that the proposed method provides a reasonable solution with less computation time compared to the finite element method and the magnetic levitation system using Halbach array magnet is stable dynamically.

PM Assisted, Brushless Wound Rotor Synchronous Machine

  • Ali, Qasim;Atiq, Shahid;Lipo, Thomas A.;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.399-404
    • /
    • 2016
  • This paper presents a new permanent magnet (PM) assisted topology for a recently introduced brushless wound rotor synchronous machine (BL-WRSM) [1]. The BL-WRSM had a dual-inverter configuration for generating a composite magneto motive force (MMF) with a fundamental component and a subharmonic component. The subharmonic component of the MMF is used for brushless excitation of the rotor. In this paper, additional PMs were introduced on the rotor of the BL-WRSM, making it a hybrid BL-WRSM. We also discussed the flux weakening operation for the hybrid BL-WRSM. The hybrid BL-WRSM offered advantages for starting the machine and provided better performance under full-load conditions. The finite element method (FEM) was used to analyze the performance of the hybrid BL-WRSM, and we compared its performance with BL-WRSM. Finally, prototypes were built with and without the PM-assistance, and experiments were conducted to demonstrate their performance.

A Noble Control Scheme of Hybrid Magnet Levitation Train (복합자석형 자기부상차량의 제어특성 개선)

  • Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.127-130
    • /
    • 1991
  • A magnetic levitation system with hybrid magnets, which is composed of permanent magnets and electromagnets, consumes less power than the conventional attraction type system. A parallel complementary controller on the lift controller is proposed to reduce the sensitivity for parameter variation and force disturbance. Simulation and experiment show that the lift system has robustness to force disturbance.

  • PDF

Robust Zero Power Levitation Control of Quadruple Hybrid EMS System

  • Cho, Su-Yeon;Kim, Won-Ho;Jang, Ik-Sang;Kang, Dong-Woo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1451-1456
    • /
    • 2013
  • This paper presents the improved zero power levitation control algorithm for a quadruple hybrid EMS (Electromagnetic Suspension) system. Quadruple hybrid EMS system is a united form of four hybrid EMS systems one on each corner coupled with a metal plate. Technical issue in controlling a quadruple hybrid EMS system is the permanent magnet's equilibrium point deviation caused by design tolerance which eventually leads to a limited zero power levitation control that only satisfies the zero power levitation in one or two hybrid EMS system among the four hybrid EMS system. In order to satisfy a complete zero power levitation control of the quadruple hybrid EMS system, the proposed method presented in this paper adds a compensating algorithm which adjusts the gap reference of each individual axe. Later, this paper proves the stability and effectiveness of the proposed control algorithm via experiment and disturbance test.

Optimal Rotor Structure Design of Interior Permanent Magnet Synchronous Machine based on Efficient Genetic Algorithm Using Kriging Model

  • Woo, Dong-Kyun;Kim, Il-Woo;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.530-537
    • /
    • 2012
  • In the recent past, genetic algorithm (GA) and evolutionary optimization scheme have become increasingly popular for the design of electromagnetic (EM) devices. However, the conventional GA suffers from computational drawback and parameter dependency when applied to a computationally expensive problem, such as practical EM optimization design. To overcome these issues, a hybrid optimization scheme using GA in conjunction with Kriging is proposed. The algorithm is validated by using two mathematical problems and by optimizing rotor structure of interior permanent magnet synchronous machine.

Noise Lowering for a Large Variable Speed Range Use Permanent Magnet Motor by Frequence Shift and Structural Response Evaluation of Electromagnetic Forces

  • Arata, Masanori;Takahashi, Norio;Fujita, Masafumi;Mochizuki, Motoyasu;Araki, Takashi;Hanai, Takashi
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • According to electrical output up rating of a permanent magnet motor and request to operate for a large variable speed range, resonance between structural natural vibration and electromagnetic force inside the motor can take place and make noise. This paper describes the mechanism of a resonance between them and noise lowering procedure by frequency shift when they are applied to the reluctance torque largely employed new motor named Permanent magnet Reluctance Motor (PRM).

Characteristic Comparison with respect to Doubly salient Types (이중돌극기의 종류에 따른 특성 비교)

  • Kim, Youn-Sung;Jin, Chang-Sung;Kim, Seung-Joo;Lee, Ho-Joon;Kim, Koung-Bum;Lee, Ju;Jung, In-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.766_767
    • /
    • 2009
  • Generally, the Doubly Salient Machine such as Switched Reluctance Motor doesn't have Permanent Magnet, it sometimes adopts permanent magnet or DC filed winding for high efficiency or adjustable speed control. In this paper, adjustable speed range is compared for Doubly Salient Permanent Magnet Machine (DSPM), Brushless Doubly Fed Doubly Salient Machine (BDFDS) and Hybrid Excited Doubly Salient Machine (HEDS). Especially, air-gap flux density to the DC field current is shown and the operating speed as the field-weakening is estimated.

  • PDF