• Title/Summary/Keyword: hybrid identification

Search Result 312, Processing Time 0.021 seconds

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Neuro-Fuzzy System and Its Application Using CART Algorithm and Hybrid Parameter Learning (CART 알고리즘과 하이브리드 학습을 통한 뉴로-퍼지 시스템과 응용)

  • Oh, B.K.;Kwak, K.C.;Ryu, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.578-580
    • /
    • 1998
  • The paper presents an approach to the structure identification based on the CART (Classification And Regression Tree) algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy system. By using the CART algorithm, the proposed method can roughly estimate the numbers of membership function and fuzzy rule using the centers of decision regions. Then the parameter identification is carried out by the hybrid learning scheme using BP (Back-propagation) and RLSE (Recursive Least Square Estimation) from the numerical data. Finally, we will show it's usefulness for fuzzy modeling to truck backer upper control.

  • PDF

Genetically Optimized Information Granules-based FIS (유전자적 최적 정보 입자 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Oh, Sung-Kwun;Lee, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.146-148
    • /
    • 2005
  • In this paper, we propose a genetically optimized identification of information granulation(IG)-based fuzzy model. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the genetic algorithms and the least square method. And also, we exploite consecutive identification of fuzzy model in case of identification of structure and parameters. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Design of a Hierarchically Structured Gas Identification System Using Fuzzy Sets and Rough Sets (퍼지집합과 러프집합을 이용한 계층 구조 가스 식별 시스템의 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.419-426
    • /
    • 2018
  • An useful and effective design method for the gas identification system is presented in this paper. The proposed gas identification system adopts hierarchical structure with two level rule base combining fuzzy sets with rough sets. At first, a hybrid genetic algorithm is used in grouping the array sensors of which the measured patterns are similar in order to reduce the dimensionality of patterns to be analyzed and to make rule construction easy and simple. Next, for low level identification, fuzzy inference systems for each divided group are designed by using TSK fuzzy rule, which allow handling the drift and the uncertainty of sensor data effectively. Finally, rough set theory is applied to derive the identification rules at high level which reflect the identification characteristics of each divided group. Thus, the proposed method is able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, we demonstrated the effectiveness of the proposed methods by identifying five types of gases.

A hybrid identification method on butterfly optimization and differential evolution algorithm

  • Zhou, Hongyuan;Zhang, Guangcai;Wang, Xiaojuan;Ni, Pinghe;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.345-360
    • /
    • 2020
  • Modern swarm intelligence heuristic search methods are widely applied in the field of structural health monitoring due to their advantages of excellent global search capacity, loose requirement of initial guess and ease of computational implementation etc. To this end, a hybrid strategy is proposed based on butterfly optimization algorithm (BOA) and differential evolution (DE) with purpose of effective combination of their merits. In the proposed identification strategy, two improvements including mutation and crossover operations of DE, and dynamic adaptive operators are introduced into original BOA to reduce the risk to be trapped in local optimum and increase global search capability. The performance of the proposed algorithm, hybrid butterfly optimization and differential evolution algorithm (HBODEA) is evaluated by two numerical examples of a simply supported beam and a 37-bar truss structure, as well as an experimental test of 8-story shear-type steel frame structure in the laboratory. Compared with BOA and DE, the numerical and experimental results show that the proposed HBODEA is more robust to detect the reduction of stiffness with limited sensors and contaminated measurements. In addition, the effect of search space, two dynamic operators, population size on identification accuracy and efficiency of the proposed identification strategy are further investigated.

Tag Anti-Collision Algorithms in Passive and Semi-passive RFID Systems -Part II : CHI Algorithm and Hybrid Q Algorithm by using Chebyshev's Inequality-

  • Fan, Xiao;Song, In-Chan;Chang, Kyung-Hi;Shin, Dong-Beom;Lee, Heyung-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.805-814
    • /
    • 2008
  • Both EPCglobal Generation-2 (Gen2) for passive RFID systems and Intelleflex for semi-passive RFID systems use probabilistic slotted ALOHA with Q algorithm, which is a kind of dynamic framed slotted ALOHA (DFSA), as the tag anti-collision algorithm. A better tag anti-collision algorithm can reduce collisions so as to increase the efficiency of tag identification. In this paper, we introduce and analyze the estimation methods of the number of slots and tags for DFSA. To increase the efficiency of tag identification, we propose two new tag anti-collision algorithms, which are Chebyshev's inequality (CHI) algorithm and hybrid Q algorithm, and compare them with the conventional Q algorithm and adaptive adjustable framed Q (AAFQ) algorithm, which is mentioned in Part I. The simulation results show that AAFQ performs the best in Gen2 scenario. However, in Intelleflex scenario the proposed hybrid Q algorithm is the best. That is, hybrid Q provides the minimum identification time, shows the more consistent collision ratio, and maximizes throughput and system efficiency in Intelleflex scenario.

A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles

  • Zhao, Yongsheng;Zhang, Bingbing;An, Guoping;Liu, Zhifeng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.141-159
    • /
    • 2016
  • Bearing joint dynamic parameter identification is crucial in modeling the high speed spindles for machining centers used to predict the stability and natural frequencies of high speed spindles. In this paper, a hybrid method is proposed to identify the dynamic stiffness of bearing joint for the high speed spindles. The hybrid method refers to the analytical approach and experimental method. The support stiffness of spindle shaft can be obtained by adopting receptance coupling substructure analysis method, which consists of series connected bearing and joint stiffness. The bearing stiffness is calculated based on the Hertz contact theory. According to the proposed series stiffness equation, the stiffness of bearing joint can be separated from the composite stiffness. Then, one can obtain the bearing joint stiffness fitting formulas and its variation law under different preload. An experimental set-up with variable preload spindle is developed and the experiment is provided for the validation of presented bearing joint stiffness identification method. The results show that the bearing joint significantly cuts down the support stiffness of the spindles, which can seriously affects the dynamic characteristic of the high speed spindles.

Parameter Identification Using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System (신경망-유전자 알고리즘을 이용한 전기${\cdot}$유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.192-199
    • /
    • 2002
  • This paper demonstrates that hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system Identification of electro-hydraulic servo system. This algorithm are consist of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. We manufactured electro-hydraulic servo system and the hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values(mass, damping coefficient, bulk modulus, spring coefficient) which minimize total square error.

Hybrid Self-Tuning Control of a Single rod Hydraulic Cylinder with Varying Payload (가변 하중을 갖는 편로드 유압 실린더의 합성 자기동조 제어)

  • Kim, M.S.;Kim, J.T.;Han, K.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.174-181
    • /
    • 1997
  • A proposed hybrid self-tuning control scheme for single rod hydraulic cylinder which has varying loads is presented here. An adaptive controller is developed for the system that use feedforward and P feedback control for simultaneous parameter identification and tracking control. Through experimental results, the performance comparison of the hybrid self-tuning controller with a constant gain P contro- ller clearly shows its superior ability in handling load changes in quiescent states.

  • PDF

Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm (전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별)

  • 곽동훈;이춘태;정봉호;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.