• Title/Summary/Keyword: hybrid girder

Search Result 71, Processing Time 0.036 seconds

Behaviors of Joints with Perfobond Rib Shear Connectors in Steel-PSC Hybrid System (Perfobond Rib을 적용한 강-PSC 혼합구조 연결부의 거동 평가)

  • Kim, Sang Hyo;Lee, Chan Goo;Yoon, Ji Hyun;Won, Jeong Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.647-657
    • /
    • 2009
  • This paper studies the behavior of joints in steel-PSC (prestressed concrete) hybrid beams, which is necessary for the application of hybrid beams to spliced girder bridges, and proposes a new type of joint with improved construction convenience and structural behavior. In the proposed joint, perfobond rib shear connectors are attached to the upper and lower plates, which are expanded from the steel girders and located between the steel girder and the PSC girder. The experimental tests were performed on hybrid beams with the suggested joint. The results showed that all the beams had similar ultimate strengths and failure modes, due to the failure of their PSC parts. The composite action of the perfobond ribs was verified by examining the initial stiffness and cracks of the test beams. In addition, the test beams showed a higher degree of ultimate strength than the beams with stud shear connectors in the joints that had been previously studied. Thus, the proposed joint is effective for the steel-PSC hybrid beam.

Direct displacement based design of hybrid passive resistive truss girder frames

  • Shaghaghian, Amir Hamzeh;Dehkordi, Morteza Raissi;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.691-708
    • /
    • 2018
  • An innovative Hybrid Passive Resistive configuration for Truss Girder Frames (HPR-TGFs) is introduced in the present study. The proposed system is principally consisting of Fluid Viscous Dampers (FVDs) and Buckling Restrained Braces (BRBs) as its seismic resistive components. Concurrent utilization of these devices will develop an efficient energy dissipating mechanism which is able to mitigate lateral displacements as well as the base shear, simultaneously. However, under certain circumstances which the presence of FVDs might not be essential, the proposed configuration has the potential to incorporate double BRBs in order to achieve the redundancy of alternative load bearing paths. This study is extending the modern Direct Displacement Based Design (DDBD) procedure as the design methodology for HPR-TGF systems. Based on a series of nonlinear time history analysis, it is demonstrated that the design outcomes are almost identical to the pre-assumed design criteria. This implies that the ultimate characteristics of HPR-TGFs such as lateral stiffness and inter-story drifts are well-proportioned through the proposed design procedure.

Theoretical and experimental research of external prestressed timber beams in variable moisture conditions

  • Miljanovic, Sladana;Zlatar, Muhamed
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.191-209
    • /
    • 2015
  • Hybrid girders can be constructed in different geometrical forms and from different materials. Selection of beam's effective constellation represents a complex process considering the variations of geometrical parameters, changes of built in material characteristics and their mutual relations, which has important effect on the behavior of the girder. This paper presents the theoretical and experimental research on behavior of the timber-steel hybrid girders' different geometrical constellation with external prestressing and in different conditions of timber moisture. These researches are based on linear elastic analysis, and further refine by using the plasticity and damage models.

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

A Study on Theoretical Analysis for Reinforced Concrete Transfer Girder of Hybrid Structures (복합구조의 철근콘크리트 전이보에 대한 이론적 해석 연구)

  • 권기혁;이춘호;김민수;이한선;고동우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.623-628
    • /
    • 2000
  • In this paper, the behavior for transfer girder of the upper-wall and lower-frame structures was studied by the nonlinear finite element analysis. It was analyzed and compared with the experimental results. Analysis results showed that failure modes were progressed by a initial diagonal crack in the shear span between the edges of the load and intermediate support plate. The nonlinear finite element analysis could predict deformation, principal stress, ultimate load and concrete crack. Also analysis results showed good agreement the test results.

  • PDF

Flexural Strength of Composite HSB Hybrid Girders in Positive Moment (HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 2011
  • The flexural strength of composite HSB hybrid I-girders under positive moment is investigated by the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specification to such girders. The hybrid girders are assumed to have the top flange and the web fabricated from HSB600 steel and the bottom flange made of HSB800 steel. More than 6,200-composite I-girder sections that satisfy the section proportion limits of AASHTOL RFD specifications are generatedby the random sampling technique to consider a statistically meaningful wide range of section properties. The flexural capacities of the sections are calculated by the nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels are modeled as an elastoplastic, strain-hardening material and the concrete as CEB-FIP model. The effects of ductility ratio and compressive strength of concrete slab on the flexural strength of composite hybrid girders make of HSB steels are analyzed. Numerical results indicated that the current AASHTO-LRFD equation can be used to calculate the flexural strength of composite hybrid girders fabricated from HSB steel.

Evaluation of Flexural Strength of Hybrid Girder composed of HSB800 and HSB600 Steel (HSB800 및 HSB600 강재를 적용한 하이브리드거더의 휨강도 평가)

  • Park, Yong Myung;Kang, Ji Hoon;Lee, Kun Joon;Kim, Hee Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.581-594
    • /
    • 2014
  • In this paper, flexural resistance of hybrid girder under uniform bending moment was evaluated, which is composed of HSB800 and HSB600 steel for the flange and web, respectively. Doubly-symmetric and monosymmetric sections with noncompact or compact flange and slender, noncompact or compact web were considered. Nonlinear analyses with 3-dim. shell element model were performed to determine the 'flexural resistance of section' and the 'lateral torsional buckling strength' by taking initial imperfection and residual stress into account. The numerical results were compared with the AASHTO LRFD and Eurocode 3 specifications and also the applicability of AASHTO LRFD appendix A6 was examined for the sections with noncompact and compact web.

Variation of Seismic Behavior of Continuous Skew Plate Girder Bridges According to the Arrangement of Bearings (받침배치에 따른 연속 플레이트 거더 사교의 지진거동 변화)

  • Moon, Seong Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.124-135
    • /
    • 2011
  • The capacity of bearings installed at abutments and piers for continuous bridges is usually determined by the magnitude of the maximum vertical reaction at each support and the capacity of bearings placed at piers is higher than that at abutments. In this study, the possibility of the improved seismic performance of base-isolated continuous skew bridges was investigated by analysing the variation of the seismic behavior of them according to three arrangements of bearings. Based on the conventional arrangement of bearings(Case A), three arrangements of bearings such as Case A, Case B and Case C were selected considering the variation of the horizontal stiffness of the lead rubber bearing(LRB) installed at the pier. The seismic behavior of the total 36 skew bridges was investigated by conducting the response spectrum analysis using the hybrid response spectrum considered the effect of LRB's damping. Results of analyses show that a more desirable seismic behavior of base-isolated continuous skew bridges can be obtained by reducing the magnitude of the horizontal stiffness of LRB placed at the pier to similar to or less than that of LRB installed at abutments. The variation of LRB's stiffness at the pier brings about period elongation and the change of mode shapes of base-isolated skew bridges and results in the reduction of the total base shear, the maximum base shear at the pier and the girder stresses. Although positive effects on the seismic behavior of base-isolated skew bridges caused by the change of arrangement of bearings decreased slighty with an increase in the flexibility of the substructure, the proposed arrangements of bearings bring about the improved seismic performance of base-isolated continuous skew plate girder bridges with less than 10m height of piers.

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web

A study on Strengthening and Rehabilitation of Concrete girder bridge using Multi-Stepwise Thermal Prestressing Method (온도프리스트레싱 공법을 이용한 콘크리트교량의 보수보강에 관한 연구)

  • Kim, Sang-Hyo;Ahn, Jin-Hee;Kim, Jun-Hwan;Lee, Sang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.238-241
    • /
    • 2006
  • The needs for strengthening and rehabilitation of the concrete bridges are a growing concern in many countries and has been emphasized in various researches and papers. Traditional external post-tensioning method using either steel bars or tendons is commonly used as a strengthening method. However, the method has some disadvantages such as stress concentration at the anchorages. Multi-stepwise thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts on strengthening and rehabilitation of concrete girder are presented and an illustrative experiment is introduced.

  • PDF