• Title/Summary/Keyword: hybrid genetic algorithm

Search Result 416, Processing Time 0.026 seconds

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

Minimizing the Total Stretch when Scheduling Flows of Divisible Requests without Interruption (총 스트레치 최소화를 위한 분할 가능 리퀘스트 흐름 스케줄링)

  • Yoon, Suk-Hun
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.1
    • /
    • pp.79-88
    • /
    • 2015
  • Many servers, such as web and database servers, receive a continual stream of requests. The servers should schedule these requests to provide the best services to users. In this paper, a hybrid genetic algorithm is proposed for scheduling divisible requests without interruption in which the objective is to minimize the total stretch. The stretch of a request is the ratio of the amount of time the request spent in the system to its response time. The hybrid genetic algorithm adopts the idea of seed selection and development in order to improve the exploitation and exploration power of genetic algorithms. Extensive computational experiments have been conducted to compare the performance of the hybrid genetic algorithm with that of genetic algorithms.

A Study of Cold Chain Logistics in China: Hybrid Genetic Algorithm Approach (중국 콜드체인 물류에 관한 연구: 혼합유전알고리즘 접근법)

  • Chen, Xing;Jang, Eun-Mi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.159-169
    • /
    • 2020
  • A cold chain logistics (CCL) model for chilled food (-1℃ to 8℃) distributed in China was developed in this study. The CCL model consists of a distribution center (DC) and distribution target points (DT). The objective function of the CCL model is to minimize the total distribution routes of all distributors. To find the optimal result of the objective function, the hybrid genetic algorithm (HGA) approach is proposed. The HGA approach was constructed by combining the improved K-means and genetic algorithm (GA) approaches. In the case study, three scenarios were considered for the CCL model based on the distribution routes and the available distance, and they were solved using the proposed HGA approach. Analysis results showed that the distribution costs and mileage were reduced by approximately 19%, 20% and 16% when the proposed HGA approach was used.

A Study on Optimization of Manganese Nodule Carrier and its Economic Evaluation (망간단괴 수송선의 최적화와 경제성 평가에 관한 연구)

  • Park, Jae-Hyung;Yoon, Gil-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.40-44
    • /
    • 2002
  • 선박 설계시 최적화에 있어 종래에는 Random search Parametric study, Hook&Jeeves Method등이 사용되어져 왔으나 1960년대 Genetic algorithm이 소개되고 꾸준히 발전함과 함께 선박 설계에서도 Genetic algorithm이 사용되기 시작하였다. 본 논문에서는 이러한 Genetic algorithm 중 Simple Genetic algorithm(SGA), Micro Genetic algorithm(MGA), Threshold Genetic algorithm(TGA), Hybrid Genetic algorithm(HGA)을 선박 설계에 적용하여 그 성능을 비교 검토해 보았다. MGA는 계산 부담을 줄이기 위해 작은 개체로 효율적인 탐색을 하며, TGA는 local optimum에서 쉽게 벗어나게 할 수 있는 특징이 있다. HGA는 Hook&Jeeves Method를 Genetic algorithm과 병합되어 있다. 이를 바탕으로 본 논문에서 망간단괴 수송선의 경제성을 평가한다. 평가 방법은 연간 300만톤을 생산한다고 가정하여 연간 운송 용적을 동호제약으로 해서 최적화를 한 뒤, 이를 이용하여 몇가지 Case로 나누어서 초기 자본, 연간 비용, 20년간 총 비용을 계산하여 가장 경제적인 선박을 선택한다.

  • PDF

UHGA channel assignment can be applied under various environments (다양한 환경에 적용이 가능한 UHGA 채널 할당 방식)

  • Heo, Seo-Jung;Son, Dong-Cheol;Kim, Chang Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.487-493
    • /
    • 2013
  • As the spread of smart devices that service variety of content, limited mobile terminal channel assignment problem has intensified. In the channel assignment in mobile networks mobile switching center at the request belongs to each base station allocates the channel to the mobile station. This effectively allocate the limited channels of various methods have been proposed for, in this case a hybrid channel allocation using genetic algorithms UHGA (Universal Hybrid Channel Assignment using Genetic Algorithm) in rural areas or urban areas, such as universal network applied to a variety of environments that the efficiency is verified through simulation.

A Study on the Energy Management Control of Hybrid Excavator (하이브리드 굴삭기의 에너지 관리 제어에 관한 연구)

  • Yoo, Bong Soo;Hwang, Cheol Min;Joh, Joongseon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1304-1312
    • /
    • 2012
  • According to the successful development of hybrid vehicle, hybridization of construction equipments like excavator, wheel loader, and backhoe etc., is gaining increasing attention. However, hybridization of excavator and commercial vehicle is very different. Therefore a specialized energy management control algorithm for excavator should be developed. In this paper, hybridization of excavators is investigated and a new energy management control algorithm is proposed. Four control parameters, i.e., lower baseline, upper baseline, idling generation speed, and idling generation torque, are newly introduced and a new operating principle using those four control parameters is proposed. The use of Genetic Algorithm for the optimization of the four control parameters from the view point of minimization of fuel consumption for standard excavating operation is suggested. In order to verify the proposed algorithm, dedicated simulation program of hybrid excavator was developed. The proposed algorithm is applied to a specific hydraulic excavator and 20.7% improvement of fuel consumption is achieved.

Crack Identification Using Hybrid Neuro-Genetic Technique (인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구)

  • Suh, Myung-Won;Shim, Mun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

The Hybrid Knowledge Integration Using the Fuzzy Genetic Algorithm

  • Kim, Myoung-Jong;Ingoo Han;Lee, Kun-Chang
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.145-154
    • /
    • 1999
  • An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes the hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.

  • PDF

The Hybrid Knowledge Integration Using the Fuzzy Genetic Algorithm

  • Kim, Myoung-Jong;Ingoo Han;Lee, Kun-Chang
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.145-154
    • /
    • 1999
  • An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes th hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.

  • PDF

Integrated Production-Distribution Planning for Single-Period Inventory Products Using a Hybrid Genetic Algorithm (혼성 유전알고리듬을 이용한 단일기간 재고품목의 통합 생산-분배계획 해법)

  • Park, Yang-Byung
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.280-290
    • /
    • 2003
  • Many firms are trying to optimize their production and distribution functions separately, but possible savings by this approach may be limited. Nowadays, it is more important to analyze these two functions simultaneously by trading off the costs associated with the whole. In this paper, I treat a production and distribution planning problem for single-period inventory products comprised of a single production facility and multiple customers, with the aim of optimally coordinating important and interrelated decisions of production sequencing and vehicle routing. Then, I propose a hybrid genetic algorithm incorporating several local optimization techniques, HGAP, for integrated production-distribution planning. Computational results on test problems show that HGAP is effective and generates substantial cost savings over Hurter and Buer's decoupled planning approach in which vehicle routing is first developed and a production sequence is consequently derived. Especially, HGAP performs better on the problems where customers are dispersed with multi-item demand than on the problems where customers are divided into several zones based on single-item demand.