• Title/Summary/Keyword: hybrid effects

Search Result 1,057, Processing Time 0.034 seconds

Hybrid Effects of Carbon-Glass FRP Sheets in Combination with or without Concrete Beams

  • Kang, Thomas H.K.;Kim, Woosuk;Ha, Sang-Su;Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • The use of carbon fibers (CF) and glass fibers (GF) were combined to strengthen concrete flexural members. In this study, data of tensile tests of 94 hybrid carbon-glass FRP sheets and 47 carbon and GF rovings or sheets were thoroughly investigated in terms of tensile behavior. Based on comparisons between the rule of mixtures and test data, positive hybrid effects were identified for various (GF/CF) ratios. Unlike the rule of mixtures, the hybrid sheets with relatively low (GF/CF) ratios also produced pseudo-ductility. From the calibrated results obtained from experiments, a new analytical model for the stress-strain relationship of hybrid FRP sheets was proposed. Finally, the hybrid effects were verified by structural tests of concrete members strengthened with hybrid FRP sheets and either carbon or glass FRP sheets.

Effects of Hybrid Lipid Concentration on Equilibrium Domain Size in a Lipid Bilayer Immersed in Water

  • Sornbundit, Kan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1899-1903
    • /
    • 2018
  • The effects of introducing hybrid lipids to a lipid bilayer containing saturated and unsaturated lipids immersed in water were studied. The lipid and water molecules were modeled as coarse-grained particles. All particles were simulated by using the dissipative particle dynamics method. The results showed that the hybrid lipids accumulated at the interface between the saturated and the unsaturated lipid domains. The relation between the hybrid lipid concentration and the equilibrium domain size was obtained. Moreover, the sizes of the simulated lipid domains are consistent with that given by the lipid raft definition.

Numerical analysis of a hybrid substructure for offshore wind turbines

  • Park, Min-Su;Jeong, Youn-Ju;You, Young-Jun;Lee, Du-Ho;Kim, Byeong-Cheol
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.169-183
    • /
    • 2014
  • For the reliable design of substructure supporting offshore wind turbines it is very important to reduce the effects of wave forces. Since the substructure is strongly influenced by the effects of wave forces as the size of substructure increases. In the present study, the hybrid substructure with multi-cylinder is newly suggested to reduce the effects of wave forces. Using diffraction theory the scattering waves in a fluid region are expressed by an Eigenfunction expansion method with three dimensional potential theory to calculate the wave force acting on the hybrid substructure. The wave force and wave run-up acting on the hybrid substructure is presented to examine the water wave interaction according to the variation of cylindrical size and the distance among cylinders. It is found that the suggested hybrid substructure with multi-cylinder is very useful to reduce the effects of wave forces acting on the substructure for offshore wind turbines.

Effects of Intercalant on the Dispersibility of Silicate Layers in Clay- dispersed Nanocomposite of Poly(styrene-co-acrylonitrile) Copolymer

  • Ko, Moon-Bae;Park, Min;Kim, Junkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • Clay/poly(styrene-co-acrylonitrile) copolymer (SAN) hybrids have been prepared by simple meltmixing of two components, SAN and organophilic clays with a twin screw extruder. Effects of intercalant on the dispersibility of silicate layers in clay-dispersed nanocomposite were studied by using five different organophilic clays modified with the intercalants of different chemical structures and different fractions of intercalant. The dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that if the fraction of intercalant in the organophilic clay becomes too high, SAN is difficult to intercalate into the inter-gallery of silicate layers in the hybrid prepared at 180$\^{C}$, and thus the hybrid shows poor dispersibility of silicate layers. The flexural modulus of the hybrid increases as the dispersibility of silicate layers in the hybrid increases.

  • PDF

Antimicrobial Fiber Products Treated with Silica Hybrid Ag Nanoparticles

  • Kim, Hwa-Jung;Park, Hae-Jin;Choi, Seong-Ho;Park, Hae-Jun
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • Silica hybrid silver nanoparticles showing the strong antimicrobial activity, in which nano-silver is bound to silica molecules, has been synthesized using ${\gamma}-irradiation$ at room temperature. The present study relates to an antimicrobial composition for coating fiber products comprising silica hybrid silver nanoparticles. In this study, we describe antimicrobial fiber products coated with the silica hybrid silver nanoparticles and a method of antimicrobially treating fiber products by coating the fiber products with the silica hybrid silver nanoparticles. The antimicrobial fiber products exhibited excellent antimicrobial effects. In detailed practice, when the present composition comprising nanosized silica-silver was applied to a cloth (fabric) in a concentration of $6.4mg\;yard^{-1}$, the viable cell number decreased to less than 10 cells before and after laundering, resulting in a reduction of 99.9% or greater in the viable cell number. The present composition displays long-lasting potent disinfecting effects on bacteria. Also, we investigated the toxicity of silica hybrid silver nanoparticles in rats. The skin of rats was treated with a 30 ppm nanoparticles solution ($2ml\;Kg^{-1}$) for 8 days. No toxicity was detected in the treatment. These results suggest that the fiber products coated with the silica hybrid silver nanoparticles can be used to inhibit the growth of various microorganisms.

Characteristics of Hybrid Expression in Fashion Illustration (패션 일러스트레이션의 혼성적 표현 특성에 관한 연구)

  • Kim, Soon-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.15 no.1
    • /
    • pp.59-74
    • /
    • 2013
  • Post-modern society leads us to accept diversity and variability instead of pursuit of the absolute truth, beauty or classical value systems, thus leading to hybrid phenomena. The purpose of this study is to analyze characteristics and expressive effects of hybrid expressions through which to provide conceptual bases for interpreting expanded meanings of fashion illustrations that express aesthetic concepts of hybrid culture. Hybrid refers to a condition on which diverse elements are mixed with each other, so any one element can not dominate others. It is often used to create something unique and new by a combination of unprecedented things. Hybrid can be classified into four categories: temporal hybrid, spatial hybrid, morphological hybrid and hybrid of different genres. Temporal hybrid from a combination of past and present in fashion illustration includes temporal blending by repetition and juxtaposition. Spatial hybrid shows itself in the form of inter-penetration and interrelationship by means of projection, overlapping, juxtaposition and multiple space. Morphological hybrid expresses itself through combination of heterogenous forms and restructuring of deformed forms. Hybrid of different genres in fashion illustration applies various graphic elements or photos within the space, and represents blending of arts and daily living. Such hybrid expressions in fashion illustrations reflect the phenomena of diversity and variability of post-modern society. Hybrid expressions in fashion illustrations predict endless possibility of expressing new images through combining various forms or casual elements and can develop toward a new creative technique.

  • PDF

Effects of Hybrid Welding Conditions on Impact Toughness of Weld Metal in Ship Structural Steel (조선용강재의 하이브리드 용접금속부 충격인성에 미치는 용접조건의 영향)

  • Hong, Seung-Gap;Lee, Jong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.130-132
    • /
    • 2006
  • In passenger ship building where thin plates are mainly used, conventional arc welding processes result in significant post-weld reworking due to thermal distortion of welded joints. In order to solve this problem, European shipbuilding industries introduced hybrid welding process since the 1990's. for passenger ship, first of all, stability is very important. So, in this study, we investigated effects of hybrid welding conditions on impact toughness of weld metal in passenger ship building using DH36 steel.

  • PDF

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

Investigation on wind stability of three-tower cable-stayed-suspension hybrid bridges under skew wind

  • Xin-Jun Zhang;Li Bowen;Nan Zhou
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.427-443
    • /
    • 2024
  • By using a computational program of three-dimensional aerostatic and aerodynamic stability analysis of long-span bridges under skew wind, the dynamic characteristics and structural stability(including the aerostatic and aerodynamic stability) of a three-tower cable-stayed-suspension hybrid bridge with main span of 1 400 meters are investigated numerically under skew wind, and the skew wind and aerostatic effects on the aerostatic and aerodynamic stability of three-tower cable-stayedsuspension hybrid bridge are ascertained. The results show that the three-tower cable-stayed-suspension hybrid bridge is a longspan structure with greater flexibility, and it is more susceptible to the wind action. The aerostatic instability of three-tower cable-stayed-suspension hybrid bridges is characterized by the coupling of vertical bending and torsion of the girder, and the skew wind does not affect the aerostatic instability mode. The skew wind has positive or negative effects on the aerostatic stability of the bridge, the influence is between -5.38% and 4.64%, and in most cases, it reduces the aerostatic stability of the bridge. With the increase of wind yaw angle, the critical wind speed of aerostatic instability does not vary as the cosine rule as proposed by the skew wind decomposition method, the skew wind decomposition method may overestimate the aerostatic stability, and the maximum overestimation is 16.7%. The flutter critical wind speed fluctuates with the increase of wind yaw angle, and it may reach to the minimum value under the skew wind. The skew wind has limited effect on the aerodynamic stability of three-tower cable-stayed-suspension hybrid bridge, however the aerostatic effect significantly reduces the aerodynamic stability of the bridge under skew wind, the reduction is between 3.66% and 21.86%, with an overall average drop of 11.59%. The combined effect of skew and static winds further reduces the critical flutter wind speed, the decrease is between 7.91% and 19.37%, with an overall average decrease of 11.85%. Therefore, the effects of skew and static winds must be comprehensively considered in the aerostatic and aerodynamic stability analysis of three-tower cable-stayed-suspension hybrid bridges.

Effects of Pre-tension and Additional Half-pin on Fracture Stability in Hybrid External Fixator System (강선의 인장력과 추가 Half pin이 혼성외고정장치 시스템의 안정성에 미치는 영향)

  • 김윤혁;이현근;박원만;오종건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • It is clinically well known that pre-tension of wires increases the fracture stability in ring or hybrid external fixation. In some cases, additional half pin should be necessary to increase the stability when soft tissue impalement occurs during fixation. In this paper, the fracture stability of a hybrid external fixator system with different pre-tension effects and additional half-pins was analysed using FEM to investigate the effects of these pre-tension and half pin on the system stability quantitatively. 3-D finite element models of five different fixator frames were developed using by beam elements. In axial compression analysis, the fracture stiffness was increased maximally 62% as the pre-tension increased. In torsion analysis, in the other hand, there is little variations in the fracture stiffness. Additional half pin increased the system stiffness about 200 %. From the results, proper pre-tension and additional half pin would provide good methods to increase the fracture stability of the hybrid external fixator and provide more surgical options to minimize soft tissue damage at the fracture site.

  • PDF