• Title/Summary/Keyword: hybrid cross laminated timber

Search Result 9, Processing Time 0.018 seconds

Study on the Mechanical Properties of Tropical Hybrid Cross Laminated Timber Using Bamboo Laminated Board as Core Layer

  • GALIH, Nurdiansyah Muhammad;YANG, Seung Min;YU, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • This study was performed to analyze the mechanical properties of tropical hybrid cross-laminated timber (CLT) with bamboo laminated board as the core layer in order to evaluate the possibility of its use as a CLT material. Bamboo board was used as the core layer and the tropical species Acacia mangium willd., from Indonesia, was used as the lamination in the outer layer. The modulus of elasticity (MOE), modulus of rupture (MOR), and shear strength of the hybrid CLT were measured according to APA PRG 320-2018 Standard for Performance-Rated Cross-Laminated Timber. The results show that the bending MOE of the hybrid CLT was found to be 2.76 times higher than SPF (Spruce Pine Fir) CLT. The reason why the high MOE value was shown in bamboo board and hybrid CLT applied bamboo board is because of high elasticity of bamboo fiber. However, the shear strength of the hybrid CLT was 0.8 times lower than shear strength of SPF CLT.

Physical and Mechanical Properties of Cross Laminated Timber Using Plywood as Core Layer (합판을 코어로 사용한 교호 집성재의 물리·기계적 성질)

  • Choi, Chul;Yuk, Cho-Rong;Yoo, Ji-Chang;Park, Jae-Young;Lee, Chang-Goo;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • This study was performed to study physical and mechanical properties of hybrid cross laminated timber (HCLT) with plywood as core layer in order to improve its mechanical properties for wooden housing. MOE, MOR, and dimensional stability of the HCLT were determined, depending on plywood composition and lamination direction. MOR value of the HCLT was improved as much as that of the glued laminated timber, which was 59.6% stronger than that of the cross laminated timber (CLT) control group. All MOE values of the HCLT were similar to glued laminated timber structure control group regardless of plywood composition and lamination directions. The dimensional stability of the HCLT was better than those of the glued laminated timber and CLT control group, owing to the use of plywood in the core.

Energy based design of a novel timber-steel building

  • Goertz, Caleb;Mollaioli, Fabrizio;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.351-360
    • /
    • 2018
  • Energy-based methodology is utilized to design novel timber-steel hybrid core wall system. The timber-steel core wall system consists of cross laminated timber (CLT), steel columns, angled brackets and t-stub connections. The CLT wall panels are stiff and strong, and ductility is provided through the steel t-stub connections. The structural system was modelled in SAP2000 finite element program. The hybrid system is explained in detail and validated using first principles. To evaluate performance of the hybrid core system, a 7-story building was designed using both forced-based design and energy based design (EBD) approaches. Performance of the structure was evaluated using 10 earthquakes records selected for 2500 return period and seismicity of Vancouver. The results clearly served as a good example of the benefits of EBD compared to conventional forced based design approaches.

Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams (강판 보강 집성재 보의 휨성능 평가 연구)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

Prediction of Withdrawal Resistance of Single Screw on Korean Wood Products

  • AHN, Kyung-Sun;PANG, Sung-Jun;OH, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • In this article, withdrawal resistances of axially loaded self-tapping screws on wood products made by Korean Larch were predicted with existing estimation equation, and compared with experimental test data. The research was required because no design methodology for the withdrawal resistance of self-tapping screw is present in Korean building code (KBC). First, the withdrawal resistance of wood screw was predicted to use the withdrawal design value estimation equation in National Design Specification for Wood Construction (NDS). Second, three types of wood products, solid wood, cross-laminated timber (CLT) and plywood, were utilized for withdrawal test. For decades, various engineered wood products have been developed, especially cross-laminated timber (CLT) and hybrid timber composites such as timber composites of solid wood and plywood. Therefore, CLT and plywood were also investigated in this study as well as solid wood. Finally, the predicted values were compared with experimentally tested values. As the results, the tested values of solid wood and CLT were higher than the predicted values. In contrast, it is inaccurate to predict withdrawal resistance of plywood since prediction was higher than tested values.

Developments of Fire-Resistant Wooden Structural Components and Those Applications to Mid- to High-Rise Buildings in Japan

  • Hanai, Atsunari;Nakai, Masayoshi;Matsuzaki, Hiroyuki;Ohashi, Hirokazu
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.221-233
    • /
    • 2020
  • Based on past experiences of natural disasters and fires in Japan, it is stipulated by law that fire-resistant buildings larger than a certain size should be unique in the world. Recent interest in global environmental issues has led to the active introduction of wooden buildings also in Japan, and it is expected that wooden buildings will become larger and higher in size. This paper introduces the background of the development of fire-resistant laminated timber with a "Self-Charring-Stop layer", the contents of this development including other related developments, and the application of these technologies. In addition, towards the realization of much larger and higher buildings in the future, the current problems and issues to be solved are set and the necessity of the future technological development is described. Finally, a conceptual model of wooden high-rise building is proposed, which will be able to be constructed in 2025 by the further technological development.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

Challenges in High-rise Wooden Structures and the Seismic Design in Japan

  • Hiroyasu, Sakata;Yoshihiro, Yamazaki
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.171-180
    • /
    • 2022
  • Research and development on high-rise or large-scale wooden buildings have been actively conducted both domestically and internationally. The trend of high-rise wooden buildings is driven by increasing awareness of environmental issues. To utilize wooden materials in buildings is believed to lead to the reduction of the environmental impact. On the other hand, Japan is one of the most earthquake-prone countries in the world, and many wooden detached houses have been damaged in past major earthquakes. This paper summarizes the issues that arise in the realization of medium- and high-rise wooden buildings in Japan, and introduces the initiatives that have been seen so far.

Load Bearing Capacity of CLT - Concrete Connections with Inclined Screws (경사못이 적용된 CLT-콘크리트 접합부의 하중전달능력)

  • Kim, Kyung-Tae;Kim, Jong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.3-13
    • /
    • 2018
  • Load bearing capacity of dowel type fasteners loaded perpendicular to the shear plane is determined based on Johansen's yield theory (Johansen, 1949). In case of inclined screws whose axis is no longer perpendicular, the ultimate load of connection increases because of additional axial withdrawal capacity. To calculate load bearing capacity for inclined screws, KBC2016 and Eurocode5 provide design equations using the combination of two effects; axial and bending strength. Although their equations have been validated for a long time, there is still minimal information how to apply them for concrete-CLT joints. Since there are not many test data available, engineers have to make certain assumptions and thus results may look inconsistent in practice. In this paper, authors would like to describe the current approach and assumptions indicated by KBC2016 and Eurocode 5 and how they match the experimental results in terms of shear strength of CLT-concrete connections. To fulfill the objective, several push-out tests were performed on nine different test specimens. Each specimen has different penetration angles and depths. By analyzing load-displacement curves, the maximum shear strength, stiffness, and ductility were obtained. Shear strength values were compared with the current design codes and theoretical equations proposed in this paper. Observations on stiffness and ductility were briefly discussed.