• 제목/요약/키워드: hybrid composite materials

검색결과 487건 처리시간 0.025초

하이브리드 코팅시스템에 의해 제조된 Cr-Mo-Si-C-N 박막의 미세구조 및 기계적 특성연구 (Microstructure and Mechanical Properties of Cr-Mo-Si-C-N Coatings Deposited by a Hybrid Coating System)

  • 윤지환;안성규;김광호
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.279-282
    • /
    • 2007
  • Cr-Mo-Si-C-N coatings were deposited on steel and Si wafer by a hybrid system of AIP and sputtering techniques using Cr, Mo and Si target in $Ar/N_2/CH_4$ gaseous mixture. Instrumental analyses of XRD and XPS revealed that the Cr-Mo-Si-C-N coatings must be a composite consisting of fine(Cr, Mo and Si)(C and N) crystallites and amorphous $Si_3N_4$ and SiC. The hardness value of Cr-Mo-Si-C-N coatings significantly increased from 41 GPa of Cr-Mo-C-N coatings to about 53 GPa with Si content of 9.3 at.% due to the refinement of (Cr, Mo and Si)(C and N) crystallites and the composite microstructure characteristics. A systematic investigation of the microstructures and mechanical properties of Cr-Mo-Si-C-N coatings prepared with various Si contents is reported in this paper.

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구 (A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design)

  • 홍용;김현식;홍동표
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

ANSYS를 이용한 복합 적층 사각판의 진동특성에 관한 연구 (A Study on the Vibration Characteristics of Laminated Composite Rectangular Plate using ANSYS)

  • 이기형
    • 한국안전학회지
    • /
    • 제12권2호
    • /
    • pp.37-44
    • /
    • 1997
  • Composite materials have various complicated characteristics depending on the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analyze composite materials. For efficient use of composite materials in engineering applications, the dynamic behavior such as natural frequencies and nodal patterns should be identified. This study presents FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. The natural frequencies of laminated composite rectangular plates having the various boundary conditions (completely clamped, 2-edge clamped, cantilevered) are experimentally obtained. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

MMB시험에 의한 평직 CFRP/GFRP 적층판 혼합모드 층간분리의 실험적 평가 (The Experimental Evaluation of the Mixed Mode Delamination in Woven CFRP/GFRP Laminates under MMB Test)

  • 곽정훈;강지웅;권오헌
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.14-18
    • /
    • 2013
  • Blades of horizontal axis are nowadays made of composite materials. Generally, composite materials satisfy design provides lower weight and good stiffness, while laminate composites have often damages as like the delamination and cracks at the interface of laminates. The box spar and tail parts of a blade are composed of the CFRP/GFRP hybrid laminate composites. However, delamination and the interfacial crack often occur in the interface of CFRP/GFRP hybrid laminate composites under the mixed mode fracture condition, especially mode I and mode II. Therefore, there is a need for the evaluation of the mixed mode fracture behavior during the delamination of CFRP/GFRP hybrid laminates. This study shows the experimental results for the delamination fracture toughness in CFRP/GFRP hybrid laminate composites. Fracture toughness experiments and estimation are performed by using DMMB(Dissimilar mixed mode bending) specimen. The materials used in the test are a commercial woven type CFRP(Carbon fiber reinforced plastic) prepreg(CF3327) and UD type GFRP(Glass fiber reinforced plastic) prepreg(HD224A). A CFRP/GFRP hybrid laminate composite is composed by the 10 plies CFRP and GFRP prepreg for DMMB. A thickness of CFRP and GFRP layer is 2.5mm and 3.0mm, respectively. Also the fulcrum location which is a loading parameter is changed from 80 to 100mm on the specimen of length 120mm because it defines the ratio of mode I to mode II. In this study, the effects of the fulcrum location are evaluated in the viewpoint of energy release rate in mode I and mode II contribution. The results show that the delamination crack initiates at higher displacement and lower load according to the increase of the fulcrum location ratio. And the variation of the energy release rate for mode I and II contributions for the mode mixity are shown.

치과용복합레진과의 결합에 있어, 상아질 내 교원섬유의 역할에 관한 연구 (TITLE : THE ROLE OF COLLAGEN FIBER IN DENTIN BONDING)

  • 박성호
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.470-478
    • /
    • 1997
  • The purpose of this study was to investigate the effects of moistening mechods of dentin on the morphologic states of hybrid layers and on the interfacial bond strength between dentin and composite. Specimens were divided into 6 groups based on the surface moistening methods and materials used. After the dentin surface was conditioned with 10 % phoporic acid and irrigated: 1. The dentin surface was dried. Then bonding agent and composite were applied. 2. The dentin surface was blot-dryed. Then primer, bonding atent and composite were applied. 3. The dentin surface was dryed first. Within 20 seconds, the surface was rewetted, then primer, bonding agent and composite were applied. 4. The dentin surface was dryed. Then primer, bonding agnent and composite were applied. 5. The dentin surface was dryed first. Atter 24hrs, the surface was rewetted, and then primer, bonding agent and composite were applied. 6. The surface was conditioned with NaOCl for 5min. Then primer, bonding agent and composite were applied. To reveal the hybrid layer, scanning electron microscopy was used after the samples were ion beam etched. The shear bond strength of each group was tom pared by ANOVA. In groups 2, 3 and 4, the hybrid layer was clearly visible, but the width was more limited in group 4. In group 1 and 5, the hybrid layer was not found, and a gap was formed between dentin and composite. In group 6, the hybrid layer was not found, but the interface between the dentin and composite was intimate. The shear bond strength of each group was as follows: Group 1 : 4MPa, Group 2 : 14MPa, Group 3 : 12MPa, Group 4 : 14MPa, Group 5 : 5MPa, Group 6 : 9MPa.

  • PDF

탄소/현무암 섬유강화 하이브리드 복합재료의 성형과 기계적 특성 평가 (Fabrication of Carbon/Basalt Hybrid Composites and Evaluation of Mechanical Properties)

  • 이진우;김윤해;정민교;윤성원;박준무
    • Composites Research
    • /
    • 제27권1호
    • /
    • pp.14-18
    • /
    • 2014
  • 탄소섬유 복합재료는 내열성 및 우수한 기계적 특성을 가지고 있는 우수한 재료이지만 가격이 비싼 결점이 있다. 따라서 본 연구에서는 높은 기계적 강도를 가지며, 가격이 비싸지 않은 재료의 개발을 위해 탄소섬유에 현무암 섬유를 첨가하여 하이브리드 복합재료를 제작하였다. 현무암 섬유의 함유 비율이 높아질수록 강도는 감소하였으며, 탄소의 강화재 비율이 80% 정도에서 CFRP와 유사한 강도를 얻을 수 있었다. 또한 섬유 각각을 적층하여 복합재료를 제작하는 것 보다 섬유사를 혼합시켜 제작한 복합재료에서 더 우수한 기계적 특성을 얻을 수 있었다.

Role of Electron Acceptor-donor on Elemental Mercury Removal Using Nano-silver-plated Activated Carbons Complexes

  • Lee, Hyo In;Yim, Yoon-Ji;Bae, Kyong-Min;Park, Soo-Jin
    • Composites Research
    • /
    • 제31권2호
    • /
    • pp.76-81
    • /
    • 2018
  • In this study, the elemental mercury removal behaviors of silver-plated porous carbons materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed by $N_2$ adsorption/desorption analysis at 77 K. The pore structures and surface morphologies of the hybrid materials were characterized by XRD and SEM, respectively. The elemental mercury adsorption capacities of all silver-plated porous carbons hybrid materials were higher than those of the as-received samples, despite the fact that the specific surface areas and total pore volumes decreased with increasing metal loading time. It was found that silver nanoparticles showed excellent elemental mercury removal behaviors in carbonaceous hybrid materials.

형상기억합금 작동기를 이용한 복합재 보의 능동 형상 제어 (Active Shape Control of Composite Beam Using Shape Memory Alloy Actuators)

  • 양승만;노진호;한재흥;이인
    • Composites Research
    • /
    • 제17권4호
    • /
    • pp.18-24
    • /
    • 2004
  • 본 논문에서는 복합재 구조물에 대하여 형상기억합금 선을 이용한 능동 형상 제어에 관한 연구를 수행하였다. 형상기억합금 선의 열-기계적인 특성을 실험적으로 측정하였으며, 복합재 보 시편의 표면에 볼트를 이용하여 형상기억합금 작동기를 고정하는 방법으로 하이브리드 복합재 구조물을 제작하였다 형상기억합금 작동기는 온도 상승에 의한 상변화에 의해 작동되며, 본 연구에서는 형상기억합금 작동기에 전력을 가하여 내부 저항을 통해 발생하는 열을 이용하여 구동하였다. 보다 빠르고 정확한 형상 및 변형 제어를 위하여 수치적 시뮬레이션을 통한 PID 되먹임 제어기를 설계하였으며, 형상기억합금 작동기에 적용하는 실험을 수행하였다.

녹차-숯-목재섬유 복합보드의 물리적 특성 (Physical Properties of Hybrid Boards Composed of Green Tea, Charcoals and Wood Fiber)

  • 박한민;허황선;성은종;남경한;임재섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권6호
    • /
    • pp.406-417
    • /
    • 2012
  • 이 연구에서는 선행연구에서 발표된 목재섬유에 녹차를 복합한 친환경 복합보드에 탈취성과 흡착성 등의 기능성을 보강한 건축내장재를 개발하기 위하여, 흑탄, 백탄, 활성탄 등 3종류의 숯을 혼합한 녹차-숯-목재섬유 복합보드를 제작하였고, 구성원료의 종류 및 배합비율이 복합보드의 치수안정성, 탈취성 및 포름알데히드 방산량에 미치는 영향을 조사하였다. 녹차-숯-목재섬유 복합보드의 흡수두께 팽창률은 녹차와 숯의 배합비율의 증가에 따라 증가하였으나, 활성탄 함유 복합보드를 제외하고, KS에 규정된 그 값보다 현저히 낮은 값을 나타내었다. 복합보드의 암모니아가스 감소율은 활성탄 10% 함유 복합보드에서 30분 경과시 96%의 높은 값을 나타내었고, 다른 모든 복합보드에서도 1시간 경과 후 거의 95%전후의 높은 암모니아가스 감소율을 나타내었다. 복합보드의 포름알데히드 방산량은 $E_1$급 요소수지를 사용했을 경우, $E_0$급에 가까운 방산량을, $E_0$급 요소수지를 사용했을 경우는 super $E_0$급의 낮은 포름알데히드 방산량을 나타내는 것이 확인되었다.